Diffie-Hellman密钥协商算法

加密算法介绍

目前常用的加密算法主要有:哈希算法(比如MD5、SHA族、Hmac),对称加密算法(比如AES),非对称加密算法(RSA),以及Diffie-Hellman密钥协商算法等等,这几种算法都有各自的特点,适合的场景也不一样,这里只做简单的介绍,想详细了解的话,网上资料很多,可以自行查看相关的资料。

各类算法的特点:

哈希算法:正向快速,不可逆性,即加密后是很难解密出明文的。经常用于数据加密和数据校验。

对称加密算法:AES是一种常用的对称加密算法,其特点是加解密都用同一个密钥。

非对称加密算法RSA:RSA算法是一种非对称加密算法,由一个私钥和一个公钥构成的密钥对,通过私钥加密,公钥解密,或者通过公钥加密,私钥解密。其中,公钥可以公开,私钥必须保密。

Diffie-Hellman密钥协商算法:Diffie-Hellman是一种密钥协商算法(简称DH算法),DH算法基于一种数学原理,能够在双方不泄露密钥的情况下协商出一种密钥来。

场景描述

在客户端向服务器端发送数据的过程中,如果是比较重要的数据(比如密码,敏感数据等),一般需要先在客户端进行加密后再发送,服务器接收到数据后再进行解密得到原始数据。(反过来服务器返回数据给客户端也是一样的道理)

这里假设客户端和服务器端采用AES(对称加密算法)进行加解密传输的数据,AES加密算法有一个特点就是加解密都用同一个密钥(这里把该密钥称作secretKey),所以双方都通过secretKey进行数据加解密。

因此在客户端向服务器第一次传输数据的时候,客户端需要先向服务器端获取secretKey,并且保存在客户端,而这种直接向服务器获取明文secretKey的过程是很容易被第三者拦截的,也就是说这一过程是不安全的。(哈哈,除非是服务器把secretKey写到纸上,亲手偷偷地递给客户端)

因此呢,客户端向服务器获取secretKey的这一过程,也是需要进行加密的。

那么,服务器需要怎么做才能把secretKey安全的送达客户端呢?

目前常采用的方法有:RSA 或 Diffie-Hellman

通过RSA安全传输密钥

RSA有一个公钥和一个私钥,公钥是允许公开出去的,私钥是保留的。RSA的要点在于用公钥加密的数据需要用私钥解密,用私钥加密的数据,需要用公钥解密。因此,比如这时候客户端把公钥发送给服务器,服务器利用客户端的公钥对secretKey进行加密,那么这份加密后的secretKey数据,就只有客户端的私钥能解开啦。即使第三者拿到了这份数据也解密不了,除非能获取到客户端的私钥。

所以,通过RSA的方式,服务器就能把secretKey安全的传递到客户端的手里啦。(不过,RSA也是有安全漏洞的,被称作中间人攻击,由于篇幅原因,这里就先不讲啦!大家自行百度。)

虽然使用RSA能够安全的传输secretKey密钥,但是麻烦点在于需要生成一对公钥和私钥,并且把公钥发送给对方,而且加解密速度比较慢。所以,介绍第二种:Diffie-Hellman密钥协商算法。

通过DH算法协商密钥

严格来说,DH算法其实并不是一种加密算法,因为它本身并不是用于加密的,我的理解是用于双方协商计算,即双方按照某种合约进行计算,从而计算出一种相同的结果。

原理如下:

第一步:初始化

    比如现在服务器提供了两个随机公钥数字(允许公开):pubN=10,modN=3;

       客户端自己生成了一个随机私钥数字(不可公开,服务器也不知道):cPrivN=2;

服务器端也自己生成了一个随机私钥数字(不可公开,客户端也不知道):sPrivN=4;

第二步:客户端、服务器端分别基于相同的数学公式进行计算,计算结果称作公钥结果:pubResult

客户端进行数学计算:cPubResult = pubN * cPrivN % modN = 10 * 2 % 3 = 2;(计算结果允许公开)

服务器进行数学计算:sPubResult = pubN * sPrivN % modN = 10 * 4 % 3 = 1;(计算结果允许公开)

客户端和服务器端交换公钥结果,客户端得到sPubResult=1,服务器端得到cPubResult=2。

第三步:协商出一致的密钥数字:keyN(客户端和服务器端得出的结果是一致的)

客户端:cKeyN = sPubResult * cPrivN % modN= 1 * 2 % 3 = 2;
服务器:sKeyN = cPubResult * sPrivN % modN= 2 * 4 % 3 = 2;

到目前为止呢,双方都协商出了密钥,并且是一致的,但是呢,有没有见过密钥是number类型的?想必都没有吧,所以需要进行第四步,生成更长的密钥。

第四步:对密钥数字进行hash生成密钥串

    const hash = crypto.createHash('sha256');
    hash.update(this.keyN.toString());
    this.secretKey = hash.digest('hex');
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,076评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,658评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,732评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,493评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,591评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,598评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,601评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,348评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,797评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,114评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,278评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,953评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,585评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,202评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,180评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,139评论 2 352

推荐阅读更多精彩内容