MapReduce之简单排序类应用

应用需求

通常在数据文件中包含大量的记录,每条记录中包含了这个事物的某个属性,需要根据这个属性对数据进行排序。

解决方案

map 函数对每条记录的事物和属性按照特定的规则进行计算,获得属性值,并以属性为 key,value为原数据值。reduce 函数对同组的排序值进行排序后按顺序输出。

应用案例

对输入文件中数据进行排序。输入文件中的每行内容均为一个数字,即一个数据。要求在输出中每行有两个间隔的数字,其中,第一个代表原始数据在数据集排序中的位次,第二个代表原始数据。

sort1.txt:
34
6543
12
-45
58
753
234
858
sort2.txt:
34
675
349
648
75
39
-7
sort3.txt:
34
76
236
2387
-497
45
34

程序代码

SortMapper

package com.test.sort;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.io.LongWritable;
import org.apache.hadoop.io.Text;
import org.apache.hadoop.mapreduce.Mapper;

public class SortMapper extends Mapper<LongWritable, Text, IntWritable, IntWritable>{

    private static IntWritable data = new IntWritable();
    private static IntWritable one = new IntWritable(1);
    
    @Override
    protected void map(LongWritable key, Text value,Context context)
            throws IOException, InterruptedException {
        String line = value.toString();
        data.set(Integer.parseInt(line));
        context.write(data, one);
    }
}

SortReducer

package com.test.sort;

import java.io.IOException;

import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Reducer;

public class SortReducer extends Reducer<IntWritable, IntWritable, IntWritable, IntWritable>{

    private static IntWritable lineNum = new IntWritable(1);
    
    @Override
    protected void reduce(IntWritable key, Iterable<IntWritable> values,Context context)
            throws IOException, InterruptedException {
        // map 阶段已经对 key 进行排序
        for (IntWritable val : values) {
            context.write(lineNum, key);
            lineNum = new IntWritable(lineNum.get() + 1);
        }
    }

}

SortRunner

package com.test.sort;

import org.apache.hadoop.conf.Configuration;
import org.apache.hadoop.conf.Configured;
import org.apache.hadoop.fs.Path;
import org.apache.hadoop.io.IntWritable;
import org.apache.hadoop.mapreduce.Job;
import org.apache.hadoop.mapreduce.lib.input.FileInputFormat;
import org.apache.hadoop.mapreduce.lib.output.FileOutputFormat;
import org.apache.hadoop.util.Tool;
import org.apache.hadoop.util.ToolRunner;

public class SortRunner extends Configured implements Tool{

    @Override
    public int run(String[] args) throws Exception {
        
        Configuration  conf = new Configuration();
        Job job = Job.getInstance(conf, "Simple Sort");
        job.setJarByClass(SortRunner.class);
        
        job.setMapperClass(SortMapper.class);
        job.setReducerClass(SortReducer.class);
        
        job.setMapOutputKeyClass(IntWritable.class);
        job.setMapOutputValueClass(IntWritable.class);
        job.setOutputKeyClass(IntWritable.class);
        job.setOutputValueClass(IntWritable.class);
        
        FileInputFormat.addInputPath(job, new Path(args[0]));
        FileOutputFormat.setOutputPath(job, new Path(args[1]));
        
        return job.waitForCompletion(true) ? 0:1;
    }

    public static void main(String[] args) throws Exception {
        int res = ToolRunner.run(new Configuration(), new SortRunner(), args);
        System.exit(res);
    }
}

运行结果

1   -497
2   -45
3   -7
4   12
5   34
6   34
7   34
8   34
9   39
10  45
11  58
12  75
13  76
14  234
15  236
16  349
17  648
18  675
19  753
20  858
21  2387
22  6543

更多精彩内容,欢迎关注微信公众号: 不会搬砖的码农

不会搬砖的码农

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,658评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,482评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,213评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,395评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,487评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,523评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,525评论 3 414
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,300评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,753评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,048评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,223评论 1 343
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,905评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,541评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,168评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,417评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,094评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,088评论 2 352

推荐阅读更多精彩内容