Spark从入门到精通29:Spark SQL:工作原理剖析以及性能优化

SparkSQL工作原理剖析

1.编写SQL语句
只要是在数据库类型的技术里面,例如MySQL、Oracle等,包括现在大数据领域的数据仓库,例如Hive。它的基本的SQL执行的模型,都是类似的,首先都是要生成一条SQL语句执行计划。
执行计划即从哪里查询,在哪个文件,从文件中查询哪些数据,此外,复杂的SQL还包括查询时是否对表中的数据进行过滤和筛选等等。
2.Unresolved LogicalPlan未解析的逻辑计划
由SqlParser生成。
逻辑的执行计划,更多的是偏向于逻辑,例如,from table students =>filter...=>select name...这里,基本上逻辑计划,都是采用Tree树形结构。
3.resolved LogicalPlan解析后的逻辑计划
由Analyzer生成。
4.optimized LogicalPlan优化后的逻辑计划
由Optimizer生成。
在传统的数据库比如Oracle,通常都会生成多个执行计划,然后有一个优化器,针对多个计划,选择一个最好的计划,而SparkSQL的优化指的是,刚生产的执行计划中,有些地方的性能是显而易见的,不太好。举例说明:
比如我们有一个SQL语句,select name from (select from ...)where ...=...,此时,在执行计划解析出来的时候,就是按照它原封不动的样子来解析成可以执行的计划,但是Optimizer,在这里就会对执行计划进行优化,比如发现where条件,其实可以放到子查询中,这样,子查询的数据量大大变小,可以优化执行速度。此时就变成了如下这样:
select name from (select name from...where...)

5.PhysicalPlan物理计划
由SparkPlan生成。到物理计划这里,就是非常接地气的计划了。在这里就已经很明了,从哪个文件读取什么数据,从哪几个文件读取,如何进行关联等等。
6.execute,执行物理计划,生成数据。
7.查询出来的数据生成RDD。

SparkSQL性能优化

1、设置Shuffle过程中的并行度:spark.sql.shuffle.partitions(SQLContext.setConf())
2、在Hive数据仓库建设过程中,合理设置数据类型,比如能设置为INT的,就不要设置为BIGINT。减少数据类型导致的不必要的内存开销。
3、编写SQL时,尽量给出明确的列名,比如select name from students。不要写select *的方式。
4、并行处理查询结果:对于Spark SQL查询的结果,如果数据量比较大,比如超过1000条,那么就不要一次性collect()到Driver再处理。使用foreach()算子,并行处理查询结果。
5、缓存表:对于一条SQL语句中可能多次使用到的表,可以对其进行缓存,使用SQLContext.cacheTable(tableName),或者DataFrame.cache()即可。Spark SQL会用内存列存储的格式进行表的缓存。然后Spark SQL就可以仅仅扫描需要使用的列,并且自动优化压缩,来最小化内存使用和GC开销。SQLContext.uncacheTable(tableName)可以将表从缓存中移除。用SQLContext.setConf(),设置spark.sql.inMemoryColumnarStorage.batchSize参数(默认10000),可以配置列存储的单位。
6、广播join表:spark.sql.autoBroadcastJoinThreshold,默认10485760 (10 MB)。在内存够用的情况下,可以增加其大小,概参数设置了一个表在join的时候,最大在多大以内,可以被广播出去优化性能。
7、钨丝计划:spark.sql.tungsten.enabled,默认是true,自动管理内存。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 219,589评论 6 508
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 93,615评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 165,933评论 0 356
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,976评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,999评论 6 393
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,775评论 1 307
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,474评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,359评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,854评论 1 317
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,007评论 3 338
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,146评论 1 351
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,826评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,484评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,029评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,153评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,420评论 3 373
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,107评论 2 356

推荐阅读更多精彩内容