JAVA加解密18-数字签名算法RSA

一、概述
1.数字签名算法可以看做是一个带有密钥的消息摘要算法,并且这个密钥包括了公钥和私钥。他是非对称加密算法和消息摘要算法的结合体
2.数字签名算法是公钥基础设施(PKI),以及许多网络安全机制的基础
3.数字签名算法有抗否认的作用
4.遵循“私钥签名,公钥验证”规则
5.常见的数字签名算法有RSA/DSA/ECDSA
6.java6支持实现了DSA算法、部分RSA算法需要bouncycastle支持,最牛的ECDSA算法(微软用来做操作系统序列号的那个)完全需要Bouncycastle支持
二、模型分析
1.甲方构造密钥对(公钥+私钥),公布公钥给乙方
2.甲方使用私钥对数据进行签名,然后将“签名+数据” 发送给乙方
3.乙方使用公钥+数字签名 验证数据

三、代码分析

package com.ca.test;
import java.security.Key;
import java.security.KeyFactory;
import java.security.KeyPair;
import java.security.KeyPairGenerator;
import java.security.PrivateKey;
import java.security.PublicKey;
import java.security.Signature;
import java.security.interfaces.RSAPrivateKey;
import java.security.interfaces.RSAPublicKey;
import java.security.spec.PKCS8EncodedKeySpec;
import java.security.spec.X509EncodedKeySpec;
import java.util.HashMap;
import java.util.Map;

import org.apache.commons.codec.binary.Base64;

/**
 * 经典的数字签名算法RSA
 * 数字签名
 * @author kongqz
 * */
public class RSACoder {
    //数字签名,密钥算法
    public static final String KEY_ALGORITHM="RSA";
    
    /**
     * 数字签名
     * 签名/验证算法
     * */
    public static final String SIGNATURE_ALGORITHM="MD5withRSA";
    
    /**
     * RSA密钥长度,RSA算法的默认密钥长度是1024
     * 密钥长度必须是64的倍数,在512到65536位之间
     * */
    private static final int KEY_SIZE=512;
    //公钥
    private static final String PUBLIC_KEY="RSAPublicKey";
    
    //私钥
    private static final String PRIVATE_KEY="RSAPrivateKey";
    
    /**
     * 初始化密钥对
     * @return Map 甲方密钥的Map
     * */
    public static Map<String,Object> initKey() throws Exception{
        //实例化密钥生成器
        KeyPairGenerator keyPairGenerator=KeyPairGenerator.getInstance(KEY_ALGORITHM);
        //初始化密钥生成器
        keyPairGenerator.initialize(KEY_SIZE);
        //生成密钥对
        KeyPair keyPair=keyPairGenerator.generateKeyPair();
        //甲方公钥
        RSAPublicKey publicKey=(RSAPublicKey) keyPair.getPublic();
        //甲方私钥
        RSAPrivateKey privateKey=(RSAPrivateKey) keyPair.getPrivate();
        //将密钥存储在map中
        Map<String,Object> keyMap=new HashMap<String,Object>();
        keyMap.put(PUBLIC_KEY, publicKey);
        keyMap.put(PRIVATE_KEY, privateKey);
        return keyMap;
        
    }
    
    
    /**
     * 签名
     * @param data待签名数据
     * @param privateKey 密钥
     * @return byte[] 数字签名
     * */
    public static byte[] sign(byte[] data,byte[] privateKey) throws Exception{
        
        //取得私钥
        PKCS8EncodedKeySpec pkcs8KeySpec=new PKCS8EncodedKeySpec(privateKey);
        KeyFactory keyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
        //生成私钥
        PrivateKey priKey=keyFactory.generatePrivate(pkcs8KeySpec);
        //实例化Signature
        Signature signature = Signature.getInstance(SIGNATURE_ALGORITHM);
        //初始化Signature
        signature.initSign(priKey);
        //更新
        signature.update(data);
        return signature.sign();
    }
    /**
     * 校验数字签名
     * @param data 待校验数据
     * @param publicKey 公钥
     * @param sign 数字签名
     * @return boolean 校验成功返回true,失败返回false
     * */
    public static boolean verify(byte[] data,byte[] publicKey,byte[] sign) throws Exception{
        //转换公钥材料
        //实例化密钥工厂
        KeyFactory keyFactory=KeyFactory.getInstance(KEY_ALGORITHM);
        //初始化公钥
        //密钥材料转换
        X509EncodedKeySpec x509KeySpec=new X509EncodedKeySpec(publicKey);
        //产生公钥
        PublicKey pubKey=keyFactory.generatePublic(x509KeySpec);
        //实例化Signature
        Signature signature = Signature.getInstance(SIGNATURE_ALGORITHM);
        //初始化Signature
        signature.initVerify(pubKey);
        //更新
        signature.update(data);
        //验证
        return signature.verify(sign);
    }
    /**
     * 取得私钥
     * @param keyMap 密钥map
     * @return byte[] 私钥
     * */
    public static byte[] getPrivateKey(Map<String,Object> keyMap){
        Key key=(Key)keyMap.get(PRIVATE_KEY);
        return key.getEncoded();
    }
    /**
     * 取得公钥
     * @param keyMap 密钥map
     * @return byte[] 公钥
     * */
    public static byte[] getPublicKey(Map<String,Object> keyMap) throws Exception{
        Key key=(Key) keyMap.get(PUBLIC_KEY);
        return key.getEncoded();
    }
    /**
     * @param args
     * @throws Exception 
     */
    public static void main(String[] args) throws Exception {
        //初始化密钥
        //生成密钥对
        Map<String,Object> keyMap=RSACoder.initKey();
        //公钥
        byte[] publicKey=RSACoder.getPublicKey(keyMap);
        
        //私钥
        byte[] privateKey=RSACoder.getPrivateKey(keyMap);
        System.out.println("公钥:/n"+Base64.encodeBase64String(publicKey));
        System.out.println("私钥:/n"+Base64.encodeBase64String(privateKey));
        
        System.out.println("================密钥对构造完毕,甲方将公钥公布给乙方,开始进行加密数据的传输=============");
        String str="RSA数字签名算法";
        System.out.println("原文:"+str);
        //甲方进行数据的加密
        byte[] sign=RSACoder.sign(str.getBytes(), privateKey);
        System.out.println("产生签名:"+Base64.encodeBase64String(sign));
        //验证签名
        boolean status=RSACoder.verify(str.getBytes(), publicKey, sign);
        System.out.println("状态:"+status+"/n/n");
        
        
    }
}
控制台输出:
公钥:
MFwwDQYJKoZIhvcNAQEBBQADSwAwSAJBAJXmcnNTaWUnib5uMMQI2VCAq/rCPoFonlGHBVhDatRH
GLEkZ2z/PiT1RxrmBdRxAb50LoNYGUOvOCieOJqU4B8CAwEAAQ==
私钥:
MIIBVQIBADANBgkqhkiG9w0BAQEFAASCAT8wggE7AgEAAkEAleZyc1NpZSeJvm4wxAjZUICr+sI+
gWieUYcFWENq1EcYsSRnbP8+JPVHGuYF1HEBvnQug1gZQ684KJ44mpTgHwIDAQABAkBUaU3f5YO/
Q7GMe+6YJceCTsMJ1WJvayNkE52N44EAAhkfmbpmhwdcRgo0CnzAsiXdPeB1inynbnv1ornu/AlZ
AiEA/iTqVvxeYFjaYfvi38OxfNNeqpBMiPjv3XlYzEs4vR0CIQCW/qm+3Lv9YpLlqWGipBBrHGfu
yv4spXxiY/mkbh4ZawIhAO14JvOSqsjSHXSS/WHipFSj2H/9h1YxbUf/3AZAf0rNAiA88cTpuIZY
G3VXJSq3Tqkh0nFQvLYipxixTdDxQVD8yQIhAIgXKKDfKeEXdmx3untvAo1zh3//MhVoo3JygBsR
gSYn
================密钥对构造完毕,甲方将公钥公布给乙方,开始进行加密数据的传输=============
原文:RSA数字签名算法
产生签名:dxlBzv3voS7YDaaNCrUaIw7ITfHHDrdfwry9d5gSbMhKPWWfBecx0jA8jPmRuYQW2iViCDHUs3n7
Smu3VZDuZw==
状态:true

四、总结
1.签名算法对非对称加密算法RSA的公钥私钥的使用是核心,配合信息摘要算法完成签名操作。其实签名看起来就是信息的摘要而已
2.密钥处理方面和非对称加密算法无异,只是将加密、解密换成签名、验证
3.RSA的数字签名算法的密钥实现与RSA加密算法一致。所以签名算法可以分为MD系列和SHA系列

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,907评论 6 506
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,987评论 3 395
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 164,298评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,586评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,633评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,488评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,275评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,176评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,619评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,819评论 3 336
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,932评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,655评论 5 346
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,265评论 3 329
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,871评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,994评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,095评论 3 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,884评论 2 354

推荐阅读更多精彩内容