RFM应用示范

本文作者:致远,连续创业者,曾为多家上市公司提供过运营整案服务,曾任 Mr&Mrs 连锁健身互联网中心总经理,现任 Muma 儿童艺术联合创始人兼运营顾问,肤智 COO 兼联合创始人。

RFM模型历史悠久,其理论知识这里就不阐述了,简单的说就是通过最近一次消费(Recency)、消费频率(Frequency)、消费金额(Monetary)这三个指标,然后把每个指标按照实际的情况,分成5档,一共形成了125类的用户。然后为了执行方便,把125类的用户归纳成8大类,如下图,最后根据这8大类用户的情况制定运营策略。

这里要说明的一点是,RFM模型不是互联网时代的产物,事实上在传统行业里也用的很广,所以其指标主要针对的是付费用户。如果我们的互联网产品用户人群是免费用户,一样可以用这个RFM模型并使用它的方法,只是指标换成了最后一次登录、登录频率、产品使用时间。

接下来我们就用实例来操作一遍:

我们现在手上有500份付费用户数据,包含(用户、最后一次消费时间间隔、消费频率、消费金额)四个字段,我们如何进行用户分层并制定有效运营策略呢?

第一步:我们把数据导入或粘贴到Excel当中,再原有的4个表头基础上,再增加R值、F值、M值三个表头。做好这样一张Excel表,如下图:

(此处只选10条数据做实例)

第二步:分别确定好RFM这三个指标五档的标准。

这是比较难的一步,因为不同的行业不同的产品不同的阶段都有不同的划分标准。比如消费金额,1000个用户里面,最低1元,最高10000元。大部分情况下,20%的用户占据了80%的金额,而80%的用户占了20%的金额,是一个长尾的分布效果。所以我们不能简单的用最高金额/5,或者用户总数/5的平均分法,这样分出来的结果不能代表一个拥有类似行为表现的群体。

这个主要还是依靠大家在本身各自行业中的理解和实际场景需求来确定了。当然,如果我们实在没有什么头绪的话,我们可以通过散点图大致分辨一下,如下图:

大家可以看到,通过散点图,我们可以比较直观的看清用户的分布(上图为用户的消费金额分布)。我们去分档的时候就尽可能的将密集的一部分分在一起,这样,该档用户群体的行为共性也就更大一点。

需要说明的是,这不是一个很严谨的分法,需要大家在实际过程中进行不断的调整。而如果我们面临海量数据的时候,最好是通过聚类算法等技术手段,才能更加科学精准的帮助我们进行判断。

以本例来说,我们最后定下了RFM各个指标下的五个分档标准。如图:

第三步:分别计算出每条记录的R、F、M值。

我们通过在Excel里面加入if判断,自动计算出该记录对应的R、F、M值,比如我们RFM分层表中,0001用户对应的R值,

即单元格E3:=IF(B3>10,1,IF(B3>8,2,IF(B3>5,3, IF(B3>3,4,5))))

我们来解释一下这条if判断语句:

如果B3>10,那么其R值为1,否则进入下一个判断;

如果B3>8,那么其R值为2,否则进入下一个判断;

如果B3>5,那么其R值为3,否则进入下一个判断;

如果B3>3,那么其R值为4,否则为5;

同样的算法,我们写出计算每一条记录F值和M值的判断条件。

F3=IF(C3>10,5,IF(C3>8,4,IF(C3>6,3, IF(C3>3,2,1))))

G3= =IF(D3>5000,5,IF(D3>3000,4,IF(D3>2000,3, IF(D3>800,2,1))))

然后,我们把Excel的单元格往下拉,最后形成这样的图:

第四步:分别算出总的R、F、M的平均值。

这一步比较简单,我们以上全部算完之后,再最下面增加一行,用AVERAGE()计算出以上所有行数的平均值。如图:

第五步:根据每条记录的R、F、M值和所有记录的平均值,判断出每条记录的R、F、M值是在平均值之上,还是平均值之下。

首选,我们先增加三个表头,如图:

然后,我们用每一条记录的R值来R的平均值进行比较,如果<平均值则显示“低”,如果大于等于则显示“高”。

我们还是用If判断语句进行自动判断,以上图为例,用户0001的“R高低值”即:

这样,我们就变成了下图:

这个时候,我们发现了一个问题,当我们把单元格往下拉的时候,E3固然变成了E4,但E13也变成了E14,由于E13是一个固定格子的数字,我们不希望它随着单元格的下拉而改变。我们就需要在if语句中在E13两边加上“$”这个符号了。

如下:

R高低值H3=IF(E3< $E $13,”低”,”高”)

F高低值I3=IF(F3< $F $13,”低”,”高”)

M高低值J3=IF(G3< $G $13,”低”,”高”)

同时,为了更直观,我们设置一个条件格式,若文本中含有“高”则背景色为红色,若含有“低”则背景色为绿色。这时候再往下拖一下单元格,就变成这样拉,如图:

第六步:根据比较值,进行八大类的归类。

 接下来,我们就要根据我们的“R高低值”“F高低值”“M高低值”,自动计算出我们的用户层级拉。我们先加个表头“用户层级”。

这一次,我们要写一串稍微长一点的IF判断语句,如下:

K3=IF(AND(H3=”高”,I3=”高”,J3=”高”),”重要价值用户”, IF(AND(H3=”高”,I3=”低”,J3=”高”),”重要发展用户”,

IF(AND(H3=”低”,I3=”高”,J3=”高”),”重要保持用户”, IF(AND(H3=”低”,I3=”低”,J3=”高”),”重要挽留用户”,

IF(AND(H3=”高”,I3=”高”,J3=”低”),”一般价值用户”, IF(AND(H3=”高”,I3=”低”,J3=”低”),”一般发展用户”,

IF(AND(H3=”低”,I3=”高”,J3=”低”),”一般保持用户”,”一般挽留用户”)))))))

本文所写的都是在Excel里面的IF判断语句,建议大家能够自己写一下,不想写或写不出也没关系,直接保存好上面的if语句Copy一下直接用就行了(修改一下单元格的序号就可以了)。

最后,如下图:

当然,我们还可以在用户层级的表头上加上“筛选”功能,可以直接搜索到我们需要的那些用户。大家也可以通过不同的颜色来区分不同的用户层级,这个就自由发挥拉。

好了,到这里,我们就已经通过用一张Excel表,完成了一次用户分层的全过程。这张表最后的效果是,就像一个程序一样,我们任意输入三个RFM数字,表格将自动会跳出这个用户的层级。 大家保存好这张excel表,以后用起来套一下就可以了,效率是相当快的,大家可以尝试自己从头做一遍。

第七步:形成图表

 完成后上面六步之后,我们已经得到了完成用户分层之后的所有用户记录,这时我们需要做成图表的形式,开个会、做个汇报啥的,如下图:

第八步:制定运营策略

回到我们上面说的,做用户分层的目的是为了有的放矢的制定出更精准、更有针对性的运营策略。所以,我们最终我们还是回到制定运营策略上来。我们的例子可参考下图:

再接下来要如何具体实施和执行,就不在本篇文章的范畴里了。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,417评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,921评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,850评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,945评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,069评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,188评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,239评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,994评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,409评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,735评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,898评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,578评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,205评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,916评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,156评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,722评论 2 363
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,781评论 2 351

推荐阅读更多精彩内容