如何使用java语言求一个正整数的平方根?(不使用库函数)

今天的这篇文章是我在刷算法题的时候遇到的,最简单的方法是直接调用java里面的Sqrt函数,不过有时候题目中会要求我们不能使用库函数,所以在这里我们自己定义Sqrt方法。

最常见的思路有两种,第一种是二分法,第二种是牛顿的微积分思想。没错,想当年大学时候学了很久很痛苦的微积分,被我第一次派上用场了。对于这两种方法我们一个一个看。

一、二分法

二分法的思想很简单,就是从0到N不断的去缩小范围来找一个一个满足精度的最佳值。我们举一个函数的例子:

1.jpg

这就是二分法的思想,求平方根也是,我们从0到value取出中间值,然后不断地比较,假设value=10,查找区间为(0,10),这时候取(0,10)的中间值mid=5,mid*mid再和value比较之后,确定下一次查找的区间变为(0,5),依次类推。一直到满足我们需要的精度即可。下面我们使用java代码实现一下:

    static double MySqrt(int value, double t){
        if (value < 0 || t<0)
            return 0;
        double left = 0;
        double right = value;
        double mid = (right + left) / 2;
        double offset = 2*t ;
        while (offset>t){
            double temp = mid*mid;
            if (temp > value){
                right = (left + right) / 2;
                offset = temp - value;
            }
            if (temp <= value){
                left = (left + right) / 2;
                offset = value - temp;
            }
            mid = (left + right) / 2;
        }
        return mid;
    }

在这里value就是我们要求的数字,t表示的是精度。这个方法在这,大家可以测试一遍。不过在这里有一个小小的问题需要我们去注意:

如果我们对整数9取平方根,结果不是3,这里有精度损失,损失的原因之一是和计算机有关的,因为计算机的底层其实只有0和1,所以会无限的接近,而不能精确表示。

以上就是二分法求解的思想,这个思想很简单,不过实现的方法却是有一点点麻烦。在这里我们开始介绍第二种方法,那就是牛顿的微积分思想
二、牛顿迭代法

牛顿的微积分的思想就是无限接近,在这里提一句,如果你是数学大佬就不要追究思想到底是啥了。对于求平方根来说,使用切线来无限逼近的方式有时候能起到意想不到的效果。

设r是f(x) = 0的根,选取x0作为r初始近似值,过点(x0,f(x0))做曲线y = f(x)的切线L,

L的方程为y = f(x0)+f'(x0)(x-x0),求出L与x轴交点的横坐标 x1 = x0-f(x0)/f'(x0),称x1为r的一次近似值。

过点(x1,f(x1))做曲线y = f(x)的切线,并求该切线与x轴交点的横坐标 x2 = x1-f(x1)/f'(x1),称x2为r的二次近似值。

重复以上过程,得r的近似值序列,其中x(n+1)=x(n)-f(x(n))/f'(x(n)),称为r的n+1次近似值,上式称为牛顿迭代公式。

我们使用一张图来演示一下:


2牛顿.png

这种方式也很好理解。所以我们直接来看实现:

static double SqrtIterator(int value,double t){
    double temp = value;
    while (fabs(temp*temp-value)>t){
        temp=(temp+value/temp) / 2.0;
    }
    return temp;
}
//取绝对值
private static double fabs(double a) {
    return (a < 0) ? -a : a;
}

上面的方法同样可以表示。而且我们可以看到,牛顿的这个方法其实更加的简单。而且精度也更好。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,384评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,845评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,148评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,640评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,731评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,712评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,703评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,473评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,915评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,227评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,384评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,063评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,706评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,302评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,531评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,321评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,248评论 2 352

推荐阅读更多精彩内容