Android 的消息机制主要由 Handler,Looper,MessageQueue,Message 等组成,而 Handler 的运行主要依赖后三者;
源码分析
Handler 的消息处理主要有五个部分, Message, Handler, MessageQueue, Looper, Threadlocal.
方法 | 作用 |
---|---|
Messager | Message 是线程之间传递的消息,他可以在内部携带少量的数据,用于线程之间交换数据, Message 有四个常用字段,what,arg1,arg2,obj.其中what,arg1,arg2可以携带整型数据,而 obj 可以携带 object 对象. |
Handler | 它主要用于发送和处理消息的发送消息一般使用的是sendMessage() 方法,还有其他一系列的sendXXX方法,但是最终都是调用了 sendMessageAtTime() 方法, 除了 sendMessageAtTime() 这个方法而发出的消息经过一系列的辗转处理后,最终会传递到 Handler的handleMessage() 方法中。 |
MessageQueue | MessageQqueue 是消息队列的意思,它主要用来存放所有通过 Handler 发送的消息,这部分的消息会一直存在消息队列中,按进入队列的时间顺序依次等待被处理. 每一个线程中都会有一个 MessageQueue 对象. |
Looper | 每个线程通过 Handler 发送的消息都保存在 MessageQueue 中,而 Looper 通过调用 loop() 方法,就会进入一个无线循环中,然后发现一个 MessageQueue 中存在一条消息就将它取出来,并传递给 Handler.handlermessage() 方法中.每一个线程只会存在一个 Looper 对象 |
ThreadLocal | MessageQueue 对象,和 Looper 对象在每个线程中都会有一个对象,那么我们怎么保证他只有一个对象呢?单利?静态?其实使用通过 ThreadLocal 来保存.ThreadLocal 是一个线程内部的数据类,他可以在指定线程中存储数据,数据存储后,只能由指定的线程获取,而其他的线程则不可获取到数据. |
在了解到这些基本的概念以后我们就来深入的看一看 Handler 的工作机制.
MessageQueue 的工作原理
MessageQueue 消息队列是通过一个单链表的数据结构来维护消息链表.下面最主要看 enqueueMessage 方法和 next() 方法.
boolean enqueueMessage(Message msg, long when) {
if (msg.target == null) {
throw new IllegalArgumentException("Message must have a target.");
}
if (msg.isInUse()) {
throw new IllegalStateException(msg + " This message is already in use.");
}
synchronized (this) {
if (mQuitting) {
IllegalStateException e = new IllegalStateException(
msg.target + " sending message to a Handler on a dead thread");
Log.w(TAG, e.getMessage(), e);
msg.recycle();
return false;
}
msg.markInUse();
msg.when = when;
Message p = mMessages;
boolean needWake;
if (p == null || when == 0 || when < p.when) {
// New head, wake up the event queue if blocked.
msg.next = p;
mMessages = msg;
needWake = mBlocked;
} else {
// Inserted within the middle of the queue. Usually we don't have to wake
// up the event queue unless there is a barrier at the head of the queue
// and the message is the earliest asynchronous message in the queue.
needWake = mBlocked && p.target == null && msg.isAsynchronous();
Message prev;
for (;;) {
prev = p;
p = p.next;
if (p == null || when < p.when) {
break;
}
if (needWake && p.isAsynchronous()) {
needWake = false;
}
}
msg.next = p; // invariant: p == prev.next
prev.next = msg;
}
// We can assume mPtr != 0 because mQuitting is false.
if (needWake) {
nativeWake(mPtr);
}
}
return true;
}
可以看出来,这个方法主要是根据时间顺序向表单中插入一条消息.
那么 next() 又是用来干什么呢?
我们继续看下去:
Message next() {
// Return here if the message loop has already quit and been disposed.
// This can happen if the application tries to restart a looper after quit
// which is not supported.
final long ptr = mPtr;
if (ptr == 0) {
return null;
}
int pendingIdleHandlerCount = -1; // -1 only during first iteration
int nextPollTimeoutMillis = 0;
for (;;) {
if (nextPollTimeoutMillis != 0) {
Binder.flushPendingCommands();
}
nativePollOnce(ptr, nextPollTimeoutMillis);
synchronized (this) {
// Try to retrieve the next message. Return if found.
final long now = SystemClock.uptimeMillis();
Message prevMsg = null;
Message msg = mMessages;
if (msg != null && msg.target == null) {
// Stalled by a barrier. Find the next asynchronous message in the queue.
do {
prevMsg = msg;
msg = msg.next;
} while (msg != null && !msg.isAsynchronous());
}
if (msg != null) {
if (now < msg.when) {
// Next message is not ready. Set a timeout to wake up when it is ready.
nextPollTimeoutMillis = (int) Math.min(msg.when - now, Integer.MAX_VALUE);
} else {
// Got a message.
mBlocked = false;
if (prevMsg != null) {
prevMsg.next = msg.next;
} else {
mMessages = msg.next;
}
msg.next = null;
if (DEBUG) Log.v(TAG, "Returning message: " + msg);
msg.markInUse();
return msg;
}
} else {
// No more messages.
nextPollTimeoutMillis = -1;
}
// Process the quit message now that all pending messages have been handled.
if (mQuitting) {
dispose();
return null;
}
// If first time idle, then get the number of idlers to run.
// Idle handles only run if the queue is empty or if the first message
// in the queue (possibly a barrier) is due to be handled in the future.
if (pendingIdleHandlerCount < 0
&& (mMessages == null || now < mMessages.when)) {
pendingIdleHandlerCount = mIdleHandlers.size();
}
if (pendingIdleHandlerCount <= 0) {
// No idle handlers to run. Loop and wait some more.
mBlocked = true;
continue;
}
if (mPendingIdleHandlers == null) {
mPendingIdleHandlers = new IdleHandler[Math.max(pendingIdleHandlerCount, 4)];
}
mPendingIdleHandlers = mIdleHandlers.toArray(mPendingIdleHandlers);
}
// Run the idle handlers.
// We only ever reach this code block during the first iteration.
for (int i = 0; i < pendingIdleHandlerCount; i++) {
final IdleHandler idler = mPendingIdleHandlers[i];
mPendingIdleHandlers[i] = null; // release the reference to the handler
boolean keep = false;
try {
keep = idler.queueIdle();
} catch (Throwable t) {
Log.wtf(TAG, "IdleHandler threw exception", t);
}
if (!keep) {
synchronized (this) {
mIdleHandlers.remove(idler);
}
}
}
// Reset the idle handler count to 0 so we do not run them again.
pendingIdleHandlerCount = 0;
// While calling an idle handler, a new message could have been delivered
// so go back and look again for a pending message without waiting.
nextPollTimeoutMillis = 0;
}
}
在 next 中有一个关键方法 for (;;)
对就是这个死循环,慢慢梳理代码我们不难看出如果有消息返回就从链表中移除.没有消息的时候就会一直柱塞在这里
Looper
在一个 Android 启动应用的时候,会创建一个主线程, 也就是UI线程.而这个主线程 ActivityThread 中的一个静态的 main 方法. 这个 main 方法也就是我们应用程序的入口点. 我们来简单的看一下这个 main 方法.
public static void main(String[] args) {
......
Looper.prepareMainLooper();
ActivityThread thread = new ActivityThread();
thread.attach(false);
......
Looper.loop();
throw new RuntimeException("Main thread loop unexpectedly exited");
}
从上面的方法中我们可以看出来,使用了 Looper.prepareMainLooper()
方法为主线程创建了 Looper 以及 MessageQueue, 并通过Looper.loop()
来开心主线程的消息循环.
public static void prepareMainLooper() {
prepare(false);
synchronized (Looper.class) {
if (sMainLooper != null) {
throw new IllegalStateException("The main Looper has already been prepared.");
}
sMainLooper = myLooper();
}
}
这个方法中调用了 prepare(false);
方法和 myLooper();
方法
private static void prepare(boolean quitAllowed) {
if (sThreadLocal.get() != null) {
throw new RuntimeException("Only one Looper may be created per thread");
}
sThreadLocal.set(new Looper(quitAllowed));
}
在这里 sThreadLocal 对象保存了一个 Looper 对象,以防止被调用两次.sThreadLocal 对象是 ThreadLocal 类型,因此保证了每个线程中只有一个 Looper 对象。
那么 Looper 到底干了什么?
private Looper(boolean quitAllowed) {
mQueue = new MessageQueue(quitAllowed);
mThread = Thread.currentThread();
}
果不其然,在 Looper 的构造函数中创建一个 MessageQueue 对象和保存了当前的线程.从之前的代码中可以看出一个线程只能有一个 Looper 对象,而 MessageQueue 又是在 Looper 构造函数中创建出来的,因此每一个线程也只有一个 MessageQueue 对象;
还有一个 prepare 的重载方法;
public static void prepare() {
prepare(true);
}
prepare()
仅仅是对 prepare(boolean quitAllowed)
的封装,这里就是解释了主线程不需要调用 Looper.prepare()
方法了.因为主线程在启动的时候已经很贴心的帮我们调用了啊!
然后在说说我们在 Looper.perpareMainLooper()
方法中的 myLooper()
/**
* Return the Looper object associated with the current thread. Returns
* null if the calling thread is not associated with a Looper.
*/
public static Looper myLooper() {
return sThreadLocal.get();
}
这串英文是什么意思呢? 让我们请出我们可爱谷歌娘:返回与当前线程关联的Looper对象。 如果调用线程未与Looper关联,则返回null。
有没有很清楚一下就明白了.就是取出我们当前线程中的 Looper 对象,保存在 sMainLooper 瞧瞧这命名方式多简单易懂;
我是不是忘记了什么?
哦!对了还有一个方法: Looper.loop()
main 还调用了这个方法是用来干什么的呢?
public static void loop() {
final Looper me = myLooper();
if (me == null) {
throw new RuntimeException("No Looper; Looper.prepare() wasn't called on this thread.");
}
final MessageQueue queue = me.mQueue;
// Make sure the identity of this thread is that of the local process,
// and keep track of what that identity token actually is.
Binder.clearCallingIdentity();
final long ident = Binder.clearCallingIdentity();
for (;;) {
Message msg = queue.next(); // might block
if (msg == null) {
// No message indicates that the message queue is quitting.
return;
}
// This must be in a local variable, in case a UI event sets the logger
Printer logging = me.mLogging;
if (logging != null) {
logging.println(">>>>> Dispatching to " + msg.target + " " +
msg.callback + ": " + msg.what);
}
msg.target.dispatchMessage(msg);
if (logging != null) {
logging.println("<<<<< Finished to " + msg.target + " " + msg.callback);
}
// Make sure that during the course of dispatching the
// identity of the thread wasn't corrupted.
final long newIdent = Binder.clearCallingIdentity();
if (ident != newIdent) {
Log.wtf(TAG, "Thread identity changed from 0x"
+ Long.toHexString(ident) + " to 0x"
+ Long.toHexString(newIdent) + " while dispatching to "
+ msg.target.getClass().getName() + " "
+ msg.callback + " what=" + msg.what);
}
msg.recycle();
}
}
快看是 next() 方法,是不是好像在刚刚的 MessageQueue 方法中看到了?
对就是这样,从这个方法里进入一个无限循环,不断的从 MessageQueue 的 next 方法获取消息,而next方法是一个阻塞操作,当没有消息的时候就一直在阻塞,当有消息通过 msg.target.dispatchMessage(msg);
这里的msg.target其实就是发送给这条消息的Handler对象。那么我们就去看看 Handle 又干了什么;
Handler
构造方法
public Handler(Callback callback) {
this(callback, false);
}
public Handler(Looper looper) {
this(looper, null, false);
}
public Handler(Looper looper, Callback callback) {
this(looper, callback, false);
}
怎么都要传递 Looper 我们没有怎么办,那就看看不需要传递 Looper 的构造函数
public Handler(Callback callback, boolean async) {
if (FIND_POTENTIAL_LEAKS) {
final Class<? extends Handler> klass = getClass();
if ((klass.isAnonymousClass() || klass.isMemberClass() || klass.isLocalClass()) &&
(klass.getModifiers() & Modifier.STATIC) == 0) {
Log.w(TAG, "The following Handler class should be static or leaks might occur: " +
klass.getCanonicalName());
}
}
mLooper = Looper.myLooper();
if (mLooper == null) {
throw new RuntimeException(
"Can't create handler inside thread that has not called Looper.prepare()");
}
mQueue = mLooper.mQueue;
mCallback = callback;
mAsynchronous = async;
}
什么? 当 Looper 为 null 竟然抛出了 Can't create handler inside thread that has not called Looper.prepare()
异常,这样我们知道为什么在子线程中使用 Handler 时要手动调用 Looper.prepare()
方法了,原来是用来创建一个 Looper 对象.那么主线程为什么不用呢?因为服务周到的主线程已经在创建的时候就自己调用了 Looper.prepare()
方法了.
Handler 的工作主要事实包含发送和接收过程.其中 post 和 send 的一系列方法主要是用俩发送消息.但是 post 其实最终也会通过 ssend 的一系列方法来实现的. 而 send 的一系列方法最终会通过 sendMessageAtTime 方法来实现.来我们看看 send 的一系列方法:
public final boolean sendMessage(Message msg)
{
return sendMessageDelayed(msg, 0);
}
public final boolean sendEmptyMessage(int what)
{
return sendEmptyMessageDelayed(what, 0);
}
public final boolean sendEmptyMessageAtTime(int what, long uptimeMillis) {
Message msg = Message.obtain();
msg.what = what;
return sendMessageAtTime(msg, uptimeMillis);
}
public final boolean sendMessageDelayed(Message msg, long delayMillis)
{
if (delayMillis < 0) {
delayMillis = 0;
}
return sendMessageAtTime(msg, SystemClock.uptimeMillis() + delayMillis);
}
public boolean sendMessageAtTime(Message msg, long uptimeMillis) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, uptimeMillis);
}
public final boolean sendMessageAtFrontOfQueue(Message msg) {
MessageQueue queue = mQueue;
if (queue == null) {
RuntimeException e = new RuntimeException(
this + " sendMessageAtTime() called with no mQueue");
Log.w("Looper", e.getMessage(), e);
return false;
}
return enqueueMessage(queue, msg, 0);
}
private boolean enqueueMessage(MessageQueue queue, Message msg, long uptimeMillis) {
msg.target = this;
if (mAsynchronous) {
msg.setAsynchronous(true);
}
return queue.enqueueMessage(msg, uptimeMillis);
}
这里我们可以看出,handler 发送的消息其实就是将消息插入消息队列,在 Looper 的 loop 方法中从 MessageQueue 中取出并调用 msg.target.dispatchMessage(msg)
;而这个其实就是就是在调用 Handler 的 dispatchMessage(msg)
:
/**
* Handle system messages here.
*/
public void dispatchMessage(Message msg) {
if (msg.callback != null) {
handleCallback(msg);
} else {
if (mCallback != null) {
if (mCallback.handleMessage(msg)) {
return;
}
}
handleMessage(msg);
}
}
先最一个非空判断,非空时调用了 handleCallback(msg);
来处理消息,那么 msg.callback
是什么东西啊? 其实这里的 msg.callback
就是一个 Runnable对象, 也就是 Handler 发送过来的 post 对象.先看看 post 的对象的方法;
public final boolean post(Runnable r)
{
return sendMessageDelayed(getPostMessage(r), 0);
}
public final boolean postAtTime(Runnable r, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r), uptimeMillis);
}
public final boolean postAtTime(Runnable r, Object token, long uptimeMillis)
{
return sendMessageAtTime(getPostMessage(r, token), uptimeMillis);
}
public final boolean postDelayed(Runnable r, long delayMillis)
{
return sendMessageDelayed(getPostMessage(r), delayMillis);
}
public final boolean postAtFrontOfQueue(Runnable r)
{
return sendMessageAtFrontOfQueue(getPostMessage(r));
}
private static Message getPostMessage(Runnable r) {
Message m = Message.obtain();
m.callback = r;
return m;
}
好了我们在看看 msg.callback
非空时 handleCallback(msg)
是做了什么:
private static void handleCallback(Message message) {
message.callback.run();
}
emmmmm... 果然就是很简单的回调了 Runnable 对象的 run 方法. 其实吧我们去看看 Activity 中的 runOnUiThread 和 View 中的 postDelayed 方法也是使用了同样的原理,我们先看看 runOnUiThread 方法:
public final void runOnUiThread(Runnable action) {
if (Thread.currentThread() != mUiThread) {
mHandler.post(action);
} else {
action.run();
}
}
View 的 postDelayed 方法:
public boolean postDelayed(Runnable action, long delayMillis) {
final AttachInfo attachInfo = mAttachInfo;
if (attachInfo != null) {
return attachInfo.mHandler.postDelayed(action, delayMillis);
}
// Assume that post will succeed later
ViewRootImpl.getRunQueue().postDelayed(action, delayMillis);
return true;
}
实质上都是在 UI 线程中执行 Runnable 中的 run 方法.
在回来看看 msg.callback 为空的时候会对 mCallback 进行非空判断,而 mCallback 又使用一个接口的引用:
/**
* Callback interface you can use when instantiating a Handler to avoid
* having to implement your own subclass of Handler.
*
* @param msg A {@link android.os.Message Message} object
* @return True if no further handling is desired
*/
public interface Callback {
public boolean handleMessage(Message msg);
}
原来 CallBack 其实就是另一种使用 Handler 的方式啊, 看来既可以派生子类重写 handleMessage() 的方法也可以通过设置 CallBack 来实现.
总结
首先在主线程创建一个 Handler 对象 ,并重写 handleMessage()方法。然后当在子线程中需要进行更新 UI 的操作,我们就创建一个 Message 对象,并通过 handler 发送这条消息出去。之后这条消息被加入到 MessageQueue 队列中等待被处理,通过 Looper 对象会一直尝试从 MessageQueue 中取出待处理的消息,最后分发会 Handler 的 handlerMessage() 方法中。
最后来一张我话的流程图:
有没有很美观.
END..