如何计算熵,条件熵和互信息 - 信息论基础

需要基础:概率论,数学基础

谈到通信中的两个问题:

  1. 数据临界压缩的值:熵 H
  2. 临界通信传输速率的值:信道容量 C

1. 如何计算熵

单个随机变量的熵为该随机变量的不确定度。(编码中多少位bit可以完整表述随机变量X)

  1. 知道随机变量X的概率密度函数,熵用于度量随机变量的平均不确定度。
H-1.png
  1. 两个例子:

a. 均匀分布,编码方式为最简单的,一种编码对应一种可能。

H-2.png

公式可以学成 H(X) = log N

b. 概率非均匀分布,概率大的编码比特数越小。ps:用于决策树定根节点。

H-3.png

2. 条件熵

公式跟以上一样,概率换为联合概率

条件熵.png

3. 互信息

定义两个随机变量的条件熵H(X|Y),即一个随机变量在给定另一个随机变量的条件下的熵。 由另一随机变量导致的原随机变量不确定度的缩减量称为互信息。(是不是很难记,其实我从没记过,看图..)

I(X;Y).png

毕业后才发现学习速度要比读书时更快...

以上截图来源网络,但是我有正版教科书(纸质版),衷心希望所有文件都能出电子版。

上课又用到了 2018.8.1

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容

  • 本系列第三篇,承接前面的《浅谈机器学习基础》和《浅谈深度学习基础》。 自然语言处理绪论 什么是自然语言处理? 自然...
    我偏笑_NSNirvana阅读 17,569评论 2 68
  • 请听题:什么是熵?什么是交叉熵?什么是联合熵?什么是条件熵?什么是相对熵?它们的联系与区别是什么? 如果你感到回答...
    工程师milter阅读 11,925评论 5 57
  • 我梦武夷以外峰,五岳尚逊三千里。我梦九曲以外溪,银河还浊八万咫。一峰惹动一溪波,一溪映照峰旖旎。旖旎又卷一...
    周延龙阅读 253评论 2 4
  • 别急,你想要的终将会得到。 一直觉得一切还是慢慢来,稳扎稳打的好。走好现在的每一步,未来也就是美好的了。一直觉得没...
    赵赵小胖阅读 333评论 6 3
  • 我们家并不在村子的集中地带,还得穿过树山中一条弯弯的小路到家。关于这条小路的记忆都是从我爸妈口中得知的,以前这条...
    J2阅读 241评论 0 0