Gartner 最近的一份报告表明,到 2020 年,全球将有 20% 的企业部署无服务器架构。这说明无服务器架构不只是一个流行语,更是一种众所周知的云计算趋势,并且已经在软件世界掀起一场革命。大型厂商(如亚马逊、微软和谷歌)已经在无服务器架构领域重资投入,追赶革命的浪潮。
Serverless 已经从观望期走向了落地进程,O'Reilly 近期的一份千人样本的调查显示:超过 40% 受访者已在使用,50% 开发者想要尝试。2020 年 Serverless 的发展将在以下几个方面取得更多进展:
1) Serverless 计算平台的能力有了长足进步,变得更加通用;
2) Serverless 正在从偏离线业务进入在线业
3) Serverless 生态不断发展,在应用构建,安全,监控报警等方面涌现了很多开源项目和创业公司,工具链越来越成熟;
4) 用户对 Serverless 的接受度不断增加,除了互联网等迅速拥抱新技术的行业,传统企业如银行用户也开始采用 Serverless 技术;
5) Java 语言、社区不断努力,试图成为 Serverless 平台的主流语言;
6) 基于 WebAssembly(WASM)的 FaaS 方案有望出现。
虽然前端一直是推陈出新速度最快、开发者最爱抱怨“学不动”的技术领域,但是回顾刚刚过去的 2019 年,多位专家都会这样告诉我们:2019 年大前端领域增速放缓,并没有出现很多颠覆性技术。仔细想想这个说法确实也站得住脚,无论框架、语言还是前后端分工,2019 年并未出现重磅新闻,主要的“厮杀”都在细分领域展开。这未尝不是好事,可能意味着前端正在走向成熟。
如果非要在 2019 年看似平淡的前端圈选择一个超过预期、2020 年值得关注的技术趋势,我们可能会选择 WebAssembly(Wasm)。WebAssembly 至今已经发展了三四年时间,2019 年发展速度之快超乎我们想象。3 月份 Mozilla 提出 WASI ;Mozilla、Fastly、英特尔与红帽宣布成立 Bytecode Alliance(字节码联盟);2019 年末的大事件则是 WebAssembly 进入 W3C 成为正式推荐标准。
Docker 联合创始人在 Twitter 上说的一句话更是给 WebAssembly 添了一把火:
如果 WASM+WASI 在 2008 年就已诞生,那么我们就用不着创建 Docker 了。
但是如果你认为 WebAssembly“真香”,可能又错了。最近对 JavaScript 开发人员进行的一项调查显示,只有一小部分人在使用 WebAssembly,因为目前大家还找不到放弃 JavaScript 的理由。
不过进入 2020 年,WebAssembly 在商业化上的进程可能会加快,如果你还没有关注和学习 WebAssembly,建议你补上这个功课。Wasm 现阶段的应用场景还比较少,主要的几个应用场景都集中在前端密集计算业务的优化上,除此之外也有 AI、区块链上的尝试。我们预测 2020 年 WebAssembly 应该主要还是以标准制定及基础设施(浏览器、编译器等)实现发展为主,在 Post-MVP 没有被完全落地的情况下,Wasm 很难跳出目前的几个应用场景来进行能够放到生产环境上的试验,这也是 2020 年 Wasm 将会面临的一个比较大的挑战。
当然对于现阶段JavaScript 开发者而言,由于Wasm 标准的落地进度并没有达到可以为 JavaScript 开发者或者前端开发者提供很多的、能够解决前端实际问题的 Wasm 落地场景,因此导致更多的小伙伴只是采取观望态度。2020 年这样的情况是否会有所改善?可能还要看 Wasm 标准在工具链和浏览器层面的落地实现程度。除了 WebAssembly,2020 年值得关注的前端趋势还有很多,比如 Serverless,比如前端智能化。
前十多年,大数据的发展主要集中在技术框架上,社区出现了一系列优秀作品,比如引领大数据风潮的 Hadoop,比如计算引擎 Spark、Flink ,比如消息中间件 Kafka 等等,可以说大数据领域的技术框架已经比较成熟。我们认为新的一年中,大数据领域将迎来大数据的容器化浪潮。IT 基础设施往云上迁移是大势所趋,由于来自云平台的竞争,Hadoop 正面临越来越大的阻力。去年 6 月 Cloudera 和 Hortonworks 合并,股价暴跌 40%。虽然 Hadoop 不太可能很快就会消失,但它的采用可能会减缓。
同时出于对成本以及对厂商锁定的担忧,促成了向混合方法的演变,包括公用云、私有云和本地部署的组合。在混合云时代,容器依靠其自身标准化、一次构建随处运行的能力,非常适合用于大数据系统的构建和管理。目前已经有大量的大数据系统原生支持 on Kubernetes,例如 Spark 官方版本从 2.3 开始就可以无需任何修改直接跑在 Kubernetes 上,而且“更好地在 K8s 上运行”已成为后续版本演进的的重大策略。行业也已涌现出多个案例。数据基础架构正在从 Hadoop 到云服务再到混合云 / Kubernetes 环境的三个阶段过渡,目前这一过程正在加速。
当然除了容器化浪潮外,2020 年大数据领域还会迎来数据实时以及全链路整合的趋势。数据本身的价值是随着时间推移而快速降低的,以 Kafka、Flink 为代表的流处理计算引擎已经为实时计算提供了坚实的底层技术支持,实时数据计算已融入各种企业场景。大数据的实时性包括快速获取和传输数据、快速计算处理数据、实时可视化数据、在线机器学习和模型实时更新等各个环节,每个环节都会影响整体实时性。
传统的机器学习和大数据两套技术也逐渐在融合,从原始数据导入到数据准备、数据训练到模型部署,整个是一套闭环,大数据和 AI 平台的集成与协同将是未来发展的一个趋势。
比如在 Spark 社区里也提出了 Hydrogen 计划,在应用层把大数据和 AI 开源的框架全部串联在一起,通过分布式的调度方式,把这些框架调度到分布式数据与 AI 平台之上。除此以外,2019 年”数据中台“的概念可谓火了一把。2020 年依然是大数据发展的一个值得关注的趋势。
文章参考用友研究院、用友开发者大赛和YonBuider开发中心资料