车道线检测——Ultra Fast Lane Detection和polyLaneNet

参考文章

1、<<Ultra Fast Structure-aware Deep Lane Detection>>
2、<<PolyLaneNet: Lane Estimation via Deep Polynomial Regression>>

相应代码

https://github.com/cfzd/Ultra-Fast-Lane-Detection
https://github.com/lucastabelini/PolyLaneNet

数据集

Dataset Frame Train Validation Test Resolution Lane Scenarios environment
TuSimple 6,408 3,268 358 2,782 1280*720 5 1 highway
CULane 133,235 88,880 9,675 34,680 1640*590 4 9 urban and highway

1、Ultra Fast Lane Detection

将pixel分割转换为grid分类的问题。对H*W的图像划分成h*(w+1)的网格,分割时需要处理H*W个点的进行分类,类别数目(C+1);现在只需要处理h*C个点的分类,类别数目(w+1)。

Variable Definition
H 图像高
W 图像宽
h 横向的anchors数目,step=10像素。(对于Tusimple,取160<=H<=710区域,h=56;对于CULane,取260<=H<=530区域,h=28)
w 竖向的gridding cells数目。(对于Tusimple,取w=100;对于CULane,取w=150)
C 车道线条数
划分成grid示意图

与分割的区别

损失函数:

分类损失(交叉熵)+ “平滑”损失(相邻的两条anchor应该相似)+“二阶差分”损失(车道线为直的,斜率一致)


分类损失

平滑损失

二阶差分损失

此外,在训练时,加入分割辅助支路,因此还有分割的交叉熵损失。

2、polyLaneNet

利用多项式进行道路建模(图中所示多项式系数a,每一条车道线有4个系数,即为3阶多项式)。
s为纵向方向车道线距图像底部的最小距离,h为纵向方向车道线距图像底部的最大距离(所有车道线共享一个h),c为车道线的置信度。


预测网络

多项式损失的计算:取y坐标,通过多项式计算x坐标,计算MSE损失。如果某个点损失小于预设阈值,令损失为0,为了减少对于已经预测准确的点的关注。

threshold = nn.Threshold(threshold**2, 0.)
poly_loss = mse(pred_xs[valid_xs], target_xs[valid_xs]) / valid_lanes_idx.sum()
poly_loss = threshold((pred_xs[valid_xs] - target_xs[valid_xs])**2).sum() / (valid_lanes_idx.sum() * valid_xs.sum())

损失函数
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,992评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,212评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,535评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,197评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,310评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,383评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,409评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,191评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,621评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,910评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,084评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,763评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,403评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,083评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,318评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,946评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,967评论 2 351

推荐阅读更多精彩内容