spark的Pair RDD的转化操作

RDD的Pari操作

也就是对二元的rdd =((a,b),(c,b))元组进行操作,这不是字典而是元组,取值是rdd [0]==(a,b),rdd [0][0]==a。
在spark中把元组的第一个值作为’键值‘,第二个元素作为‘value’。通过键值对 RDD 提供了一些新的操作接口(比如 统计每个产品的评论,将数据中键相同的分为一组,将两个不同的 RDD 进行分组合并等)。

import sys

from pyspark import SparkContext

if __name__ == "__main__":
    master = "local"
    if len(sys.argv) == 2:
        master = sys.argv[1]
    try:
        sc.stop() 
    except:
        pass
    sc = SparkContext(master, "WordCount")
    nums= sc.parallelize(((1, 2), (3, 4), (3, 6)))
    sumCount = nums.reduceByKey(lambda x, y: x + y) 
    print(sumCount.collect())

结果:

[(1, 2), (3, 10)]

常见的pair操作:


两个RDD操作:

import sys

from pyspark import SparkContext

if __name__ == "__main__":
    master = "local"
    if len(sys.argv) == 2:
        master = sys.argv[1]
    try:
        sc.stop() 
    except:
        pass
    sc = SparkContext(master, "WordCount")
    RDD1= sc.parallelize(((1, 2), (3, 4), (3, 6)))
    print(RDD1.collect())
    RDD2= sc.parallelize(((3,9),))
    print(RDD2.collect())
    RDD3 = RDD1.join(RDD2) 
    print(RDD3.collect())

结果:

[(1, 2), (3, 4), (3, 6)]
[(3, 9)]
[(3, (4, 9)), (3, (6, 9))]
import sys

from pyspark import SparkContext

if __name__ == "__main__":
    master = "local"
    if len(sys.argv) == 2:
        master = sys.argv[1]
    try:
        sc.stop() 
    except:
        pass
    sc = SparkContext(master, 'test')
    RDD1= sc.parallelize(((1, '012345678'),
                          (2, '0123457'), 
                          (3, '012345'), 
                          (4, '01234')))
    print(RDD1.collect())
    RDD1 = RDD1.filter(lambda keyValue: len(keyValue[1]) < 8)
    print(RDD1.collect())

说明pair可以看作普通的元组对待:

[(1, '012345678'), (2, '0123457'), (3, '012345'), (4, '01234')]
[(2, '0123457'), (3, '012345'), (4, '01234')]
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容