Hadoop、storm和Spark Streaming简单介绍(非原创)

文章大纲

一、Hadoop是什么
二、storm是什么
三、Spark Streaming是什么
四、Spark与storm比较
五、参考文章

一、Hadoop是什么

1. 简介

Hadoop是一个由Apache基金会所开发的分布式系统基础架构。
用户可以在不了解分布式底层细节的情况下,开发分布式程序。充分利用集群的威力进行高速运算和存储。
[1] Hadoop实现了一个分布式文件系统(Hadoop Distributed File System),简称HDFS。HDFS有高容错性的特点,并且设计用来部署在低廉的(low-cost)硬件上;而且它提供高吞吐量(high throughput)来访问应用程序的数据,适合那些有着超大数据集(large data set)的应用程序。HDFS放宽了(relax)POSIX的要求,可以以流的形式访问(streaming access)文件系统中的数据。
Hadoop的框架最核心的设计就是:HDFS和MapReduce。HDFS为海量的数据提供了存储,而MapReduce则为海量的数据提供了计算。 [2]

2. 特点

(1)Hadoop是磁盘级计算,进行计算时,数据在磁盘上,需要读写磁盘
(2)Hadoop M/R基于HDFS,需要切分输入数据、产生中间数据文件、排序、数据压缩、多份复制等,效率较低。
(3)Hadoop适合处理离线的静态的大数据;

温馨提示
(1)延时,指数据从产生到运算产生结果的时间,“快”应该主要指这个。
(2)吞吐,指系统单位时间处理的数据量。

二、storm是什么

1. 简介

Storm是一个分布式的,可靠的,容错的数据流处理系统。Storm集群的输入流由一个被称作spout的组件管理,spout把数据传递给boltbolt要么把数据保存到某种存储器,要么把数据传递给其它的bolt。一个Storm集群就是在一连串的bolt之间转换spout传过来的数据。

2. 特点

(1)Storm是内存级计算,数据直接通过网络导入内存。读写内存比读写磁盘速度快n个数量级
(2)Storm 基于ZeroMQ这个高性能的消息通讯库,不持久化数据。
(3)简单的编程模型。类似于MapReduce降低了并行批处理复杂性,Storm降低了进行实时处理的复杂性。
(4)可以使用各种编程语言。你可以在Storm之上使用各种编程语言。默认支持Clojure、Java、Ruby和Python。要增加对其他语言的支持,只需实现一个简单的Storm通信协议即可。
(5)容错性。Storm会管理工作进程和节点的故障。
(6)水平扩展。计算是在多个线程、进程和服务器之间并行进行的。
(7)可靠的消息处理。Storm保证每个消息至少能得到一次完整处理。任务失败时,它会负责从消息源重试消息。
(8)快速。系统的设计保证了消息能得到快速的处理,使用MQ作为其底层消息队列。
(9)本地模式。Storm有一个“本地模式”,可以在处理过程中完全模拟Storm集群。这让你可以快速进行开发和单元测试

3. 适用Storm的场景

(1)需要纯实时,不能忍受1秒以上延迟的场景下使用,比如实时金融系统,要求纯实时进行金融交易和分析
(2)对于实时计算的功能中,要求可靠的事务机制和可靠性机制,即数据的处理完全精准,一条也不能多,一条也不能少,也可以考虑使用Storm
(3)若还需要针对高峰低峰时间段,动态调整实时计算程序的并行度,以最大限度利用集群资源(通常是在小型公司,集群资源紧张的情况),也可以考虑用Storm
(4)如果一个大数据应用系统,它就是纯粹的实时计算,不需要在中间执行SQL交互式查询、复杂的transformation算子等,那么用Storm是比较好的选择

三、Spark Streaming是什么

1. 简介

Spark Streaming可整合多种输入数据源,如Kafka、Flume、HDFS,甚至是普通的TCP套接字。经处理后的数据存储至文件系统、数据库,或显示在仪表盘里。
Spark Streaming的基本原理是将实时输入数据流以时间片(秒级)为单位进行拆分,然后经Spark引擎以类似批处理方式处理每个事件片数据。
Spark Streaming最主要的抽象是DStream(Discretized Stream, 离散化数据流),表示连续不断的数据流。在内部实现上,Spark Streaming的输入数据按照时间片(如1秒)分成一段一段,每一段数据转换为Spark中的RDD,这些分段就是Dstream,并且对DStream的操作都最终转变为对相应的RDD的操作。

2. 特点

(1)Spark没有提供文件管理系统,所以,它必须和其他的分布式文件系统进行集成才能运作,它只是一个计算分析框架,专门用来对分布式存储的数据进行计算处理,它本身并不能存储数据;
(2)Spark可以使用Hadoop的HDFS或者其他云数据平台进行数据存储,但是一般使用HDFS;

3. Spark Streaming适用场景

(1)不要求纯实时,不要求强大可靠的事务机制,不要求动态调整并行度,那么可以考虑使用Spark Streaming
(2)考虑使用Spark Streaming最主要的一个因素,应该是针对整个项目进行宏观的考虑,即:如果一个项目除了实时计算之外,还包括了离线批处理、交互式查询等业务功能,而且实时计算中,可能还会牵扯到高延迟批处理、交互式查询等功能,那么就应该首选Spark生态,用Spark Core开发离线批处理,用Spark SQL开发交互式查询,用Spark Streaming开发实时计算,三者可以无缝整合,给系统提供非常高的可扩展性 Spark Streaming与Storm的优劣分析事实上,Spark Streaming绝对谈不上比Storm优秀。

四、Spark与storm比较

总结
总之,这两个框架在实时计算领域都很优秀,只是擅长的细分场景并不相同。Spark Streaming仅仅在吞吐量上比Storm要优秀,而吞吐量这一点,也是历来挺Spark Streaming贬Storm的人着重强调的。但是问题是,是不是在所有的实时计算场景下,都那么注重吞吐量?不尽然。因此,通过吞吐量说Spark Streaming强于Storm,不靠谱。事实上,Storm在实时延迟度上,比Spark Streaming就好多了,前者是纯实时,后者是准实时。而且,Storm的事务机制、健壮性 / 容错性、动态调整并行度等特性,都要比Spark Streaming更加优秀。Spark Streaming,有一点是Storm绝对比不上的,就是:它位于Spark生态技术栈中,因此Spark Streaming可以和Spark Core、Spark SQL无缝整合,也就意味着,我们可以对实时处理出来的中间数据,立即在程序中无缝进行延迟批处理、交互式查询等操作。这个特点大大增强了Spark Streaming的优势和功能。
Hadoop适合处理离线的静态的大数据;
Spark适合处理离线的流式的大数据;
Storm适合处理在线的实时的大数据。

五、参考文章

  1. https://blog.csdn.net/qq_33314107/article/details/80904262
  2. https://blog.csdn.net/zxc123e/article/details/81289147
  3. https://blog.csdn.net/wx1528159409/article/details/86612211
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,029评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,395评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,570评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,535评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,650评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,850评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,006评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,747评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,207评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,536评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,683评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,342评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,964评论 3 315
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,772评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,004评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,401评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,566评论 2 349

推荐阅读更多精彩内容