scRepertorie+Seurat

ref: https://ncborcherding.github.io/vignettes/vignette.html#6_Interacting_with_Seurat
data: download.file("https://bioshare.bioinformatics.ucdavis.edu/bioshare/download/iimg5mz77whzzqc/vdj_v1_mm_balbc_pbmc.zip")

#scRepertoire
rm(list=ls())
library(scRepertoire)
csv1 <- read.csv("vdj_v1_mm_balbc_pbmc_t_filtered_contig_annotations.csv", stringsAsFactors = F)
contig_list <- list(csv1)
combined <- combineTCR(contig_list, samples = c("balbc"), ID = c("pbmc"),cells = "T-AB")
#the total or relative numbers of unique clonotypes. 
p1 <- quantContig(combined, cloneCall="gene+nt", scale = T)
#the relative distribution of clonotypes
p2 <- abundanceContig(combined, cloneCall = "gene", scale = F)
#the length distribution of the CDR3 sequences
p3 <- lengthContig(combined, cloneCall="aa", chains = "combined") 
#the individual chains
p4 <- lengthContig(combined, cloneCall="nt", chains = "single") 
#the relative usage of vgenes of the TCR
p5 <- vizVgenes(combined, TCR="TCR1", facet.x = "sample", facet.y = "ID")
library(patchwork)
p1+p2+p3+p4
p5

#Clonal Space Homeostasis
p6 <- clonalHomeostasis(combined, cloneCall = "gene")
#Clonal Proportion
p7 <- clonalProportion(combined, cloneCall = "gene") 
p6+p7
#Interacting with Seurat
library(Seurat)
library(cowplot)
library(hdf5r)
#加载Cellranger output file
balbc_pbmc <- Read10X_h5("vdj_v1_mm_balbc_pbmc_5gex_filtered_feature_bc_matrix.h5")
s_balbc_pbmc <- CreateSeuratObject(counts = balbc_pbmc, min.cells = 3, min.features = 200, project = "cellranger")
#提取线粒体基因
s_balbc_pbmc$percent.mito <- PercentageFeatureSet(s_balbc_pbmc, pattern = "^mt-")
#seurat workflow
seurat_workflow <- function(s_balbc_pbmc){
s_balbc_pbmc <- subset(s_balbc_pbmc, percent.mito <= 10)
s_balbc_pbmc <- subset(s_balbc_pbmc, nCount_RNA >= 500 & nCount_RNA <= 40000)
s_balbc_pbmc <- NormalizeData(s_balbc_pbmc, normalization.method = "LogNormalize", scale.factor = 10000)
s_balbc_pbmc <- FindVariableFeatures(s_balbc_pbmc, selection.method = "vst", nfeatures = 2000)
all.genes <- rownames(s_balbc_pbmc)
s_balbc_pbmc <- ScaleData(s_balbc_pbmc, features = all.genes)
s_balbc_pbmc <- RunPCA(s_balbc_pbmc, features = VariableFeatures(object = s_balbc_pbmc))
use.pcs = 1:30
s_balbc_pbmc <- FindNeighbors(s_balbc_pbmc, dims = use.pcs)
s_balbc_pbmc <- FindClusters(s_balbc_pbmc, resolution = c(0.5))
s_balbc_pbmc <- RunUMAP(s_balbc_pbmc, dims = use.pcs)}
s_balbc_pbmc <- seurat_workflow(s_balbc_pbmc)
seurat <- s_balbc_pbmc
#save(s_balbc_pbmc,file="seurat.rda")
#seurat <- get(load("seurat.rda"))
#Becouse the barcodes in Seurat have no prefix, we need remove the barcode prefix in combined
for (i in seq_along(combined)) {
  combined[[i]] <- stripBarcode(combined[[i]], column = 1, connector = "_", num_connects = 3)
}
seurat <- combineExpression(combined, seurat,cloneCall = "gene")
#visualization
colorblind_vector <- colorRampPalette(c("#FF4B20", "#FFB433", "#C6FDEC", "#7AC5FF", "#0348A6","#0348A6","#0348A6"))
#the distribution of the clonotype bins by first ordering the clonoType as a factor
slot(seurat, "meta.data")$cloneType <- factor(slot(seurat, "meta.data")$cloneType, 
levels = c("Hyperexpanded (100 < X <= 500)", 
"Large (20 < X <= 100)",  
"Medium (5 < X <= 20)", 
"Small (1 < X <= 5)",  
"Single (0 < X <= 1)", NA))
p1 <- DimPlot(seurat, group.by = "cloneType") + scale_color_manual(values = colorblind_vector(5), na.value="grey")
#look at the clonotypes by calling specific sequences
seurat <- highlightClonotypes(seurat, cloneCall= "aa", sequence = c("CAARDTGYQNFYF_CASSIRVNTEVFF"))
p2 <- DimPlot(seurat, group.by = "highlight")
 ##type1数量太少了,不是很明显
#look at count of cells by cluster assigned into specific frequency ranges
p3 <- occupiedscRepertoire(seurat, x.axis = "cluster")
p1/p2/p3
#clonaldiversity
combined2 <- expression2List(seurat, group = "cluster")
length(combined2) #now listed by cluster
p4 <- clonalDiversity(combined2, cloneCall = "nt")
#clonalhomeostasis
p5 <- clonalHomeostasis(combined2, cloneCall = "nt")
#clonalpropoetion
p6 <- clonalProportion(combined2, cloneCall = "nt")
#clonaloverlap
p7 <- clonalOverlap(combined2, cloneCall="aa", method="overlap")
p4/p5/p6
p7

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,372评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,368评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,415评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,157评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,171评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,125评论 1 297
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,028评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,887评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,310评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,533评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,690评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,411评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,004评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,659评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,812评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,693评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,577评论 2 353