数据预处理_数据相关性分析

相关性分析

1、相关性分析是指对多个具备相关关系的变量进行分析,从而衡量变量间的相关程度或密切程度

2、相关性可以应用到所有数据的分析过程中,任何事物之间都是存在一定的联系

3、为了更准确描述变量之间的相关程度,通过计数相关系数来表示,在二元变量的相关分析中用相关系数(R)表示,而常用的有Pearson相关系数(皮尔逊相关系数) 和Spearman秩相关系数(斯皮尔曼相关系数)

  • 相关系数取值范围:-1≤R≤1,R>0为正相关表示两个变量的增长趋势相同,R<0为负相关表示两个变量的增长趋势相反
  • 相关性的强弱看相关系数R的绝对值。
    • |R|=0,不存在线性关系,|R|=-1,完全线性相关
    • |R|≤0.3,极弱线性相关或不存在线性相关
    • 0.3<|R|≤0.5,低度线性相关
    • 0.5≤|R|≤0.8,显著线性相关
    • |R|>0.8,高度线性相关
# 设置cell多行输出

from IPython.core.interactiveshell import InteractiveShell 
InteractiveShell.ast_node_interactivity = 'all' #默认为'last'

# 导入相关库
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
import seaborn as sns
import os
import warnings

warnings.filterwarnings('ignore')
os.chdir(r'E:\python_learn\data\python_book_v2\chapter3')
file_name='data5.txt'
data = pd.read_table(file_name,names=list('ABCDEFGHIJ'))
data.head()

Pearson相关系数 → data.corr(method='pearson')

  • pearson相关系数一般用于分析两个连续性变量之间的关系,且要求连续变量的取值服从正态分布。

→pandas的corr()函数可以直接给出数据字段的相关系数矩阵,返各类型之间的相关系数DataFrame表格。

  • 参数说明:
    • method:可选值为{‘pearson’, ‘kendall’, ‘spearman’}
      • pearson:Pearson相关系数来衡量两个数据集合是否在一条线上面,即针对线性数据的相关系数计算,针对非线性数据便会有误差。
      • kendall:用于反映分类变量相关性的指标,即针对无序序列的相关系数,非正太分布的数据
      • spearman:非线性的,非正太分析的数据的相关系数
    • min_periods:样本最少的数据量
# 此处假设数据服从正态分布

# pearson相关系数矩阵
pearson = round(data.corr(method='pearson',min_periods=1),2)   # method默认pearson
pearson
# 用色彩映射表现返回的相关性矩阵的相关性强弱
pearson_abs = np.abs(pearson)
pearson_abs.style.background_gradient(cmap='Blues',axis =1,low=0,high=1)
# cmap:颜色
# axis:映射参考,0为行,1以列
# 用热力图可视化
fig,ax = plt.subplots(1,1,figsize=(8,6))
hot_img = ax.matshow(np.abs(pearson),vmin=0,vmax=1,cmap='Greens')
# vmin=0,vmax=1  设置值域从0-1
fig.colorbar(hot_img)  # 生成颜色渐变条(右侧)
ax.set_title('热力图-Pearson相关性矩阵',fontsize=14,pad=12)
ax.set_xticks(range(0,10,1))
ax.set_yticks(range(0,10,1))
ax.set_xticklabels(['x'+str(i) for i in range(len(pearson))],fontsize=12)
ax.set_yticklabels(['x'+str(i) for i in range(len(pearson))],fontsize=12)

Spearman秩相关系数 → data.corr(method='spearman')

  • 不服从正态分布的变量、分类或等级变量之间的关联性可采用Spearman秩相关系数来描述,因此Spearman秩相关系数又称为等级相关系数
# Sperman秩相关系数矩阵
spearman = round(data.corr(method='spearman'),2)
spearman
  • 当数据变量之间的相关性较强的时,说明变量间可能存在共线性相关性,可以采取降维的处理方法,从原有的变量中提取部分特征代替原数据的所有特征。
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,657评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,662评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,143评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,732评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,837评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,036评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,126评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,868评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,315评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,641评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,773评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,859评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,584评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,676评论 2 351

推荐阅读更多精彩内容