Spring+SpringMVC+MyBatis+easyUI整合进阶篇(十四)Redis缓存正确的使用姿势

作者:13
GitHub:https://github.com/ZHENFENG13
版权声明:本文为原创文章,未经允许不得转载。

简介

这是一篇关于Redis使用的总结类型文章,会先简单的谈一下缓存的应用场景、缓存的使用逻辑及注意事项,然后是Redis缓存与数据库间结合以进行系统优化,当然文章的最后也会给出具体的代码实现,不至于看到文章的你一头雾水,理论要讲,项目代码也要分享,这是我写博客的基本出发点。


1

应用场景

Redis能做什么呢?

这是个好问题,不同的人可能会给出不同的答案,因为它的应用场景真的很多,作为一个优秀的nosql数据库可以结合其他产品做很多事情,比如:tomcat集群的session同步、与nginx和lua结合做限流工具、基于Redis的分布式锁实现、分布式系统唯一主键生成策略、秒杀场景中也会看到它、它还能够作为一个消息队列.....

Redis的应用场景很多很多,以上也只是列举了一部分而已,由于本文是围绕我的开源项目perfect-ssm来写的,所以在本文的场景就是一个缓存中间层,对于读多写少的应用场景,我们经常使用缓存来进行优化以提高系统性能。

我曾经写过一篇《一次线上Mysql数据库崩溃事故的记录》的文章,里面记录了Web请求是如何毫不留情的摧垮mysql数据库,进而导致网站应用无法正常运转。当时的情况就是数据库读请求太多,事故的主要原因也是这个,后续的解决方案也就是在项目中添加缓存层,使得热点数据得以存入缓存,不会重复的去读取mysql,将大部分请求压力转移至Redis缓存中以减轻mysql的负担。

2

接入缓存后的处理逻辑

请求过来后,首先判断Redis里面有没有,有数据则直接返回Redis中的数据给用户,没有则查询数据库,如果数据库中也没有则返回空或者提醒语句即可。

当然,针对不同的操作,对于Redis和mysql的操作也是不同的:

添加操作

如果是需要放入缓存的数据,那么在向mysql数据库中插入成功后,生成对应的key至,并存入Redis中。

修改操作

向mysql数据库中修改成功后,修改Redis中的数据,但是Redis并没有更新语句,所以只能先删除,再添加完成更新操作。

需要注意的是,考虑到程序对于Redis的操作可能会失败,这时mysql中的数据已经修改,但是Redis中的数据依然是上一次的数据,导致数据不一致的问题,所以是先操作Redis还是先操作mysql需要慎重考虑。

删除操作

与修改操作相同,先删除数据,再更新缓存,但是同样会有出现数据不一致问题的可能性需要注意,如果数据库中的数据删除了,但是Redis中的数据没删除,又会出现业务问题。

查询操作

首先通过Redis查询,如果缓存中已经存在数据则直接返回即可,此时就不再需要通过mysql数据库来获取数据,减少对mysql的请求,如果缓存中不存在数据,则依然通过mysql数据库查询,查询到数据后,存入Redis缓存中。

本项目中的代码是先操作mysql,再操作Redis,有概率会出现上文中提到的数据库与缓存数据不一致的情况,所以需要注意,本文的代码只做参考,用到实际项目中还是需要根据具体的业务逻辑进行合理的修改。

使用缓存的建议

缓存存储策略:

可以缓存的数据的特征基本上是以下几点:

  • 热点数据
  • 实时性要求不高的数据
  • 业务逻辑简单的数据

至于什么数据,不同的系统、不同的项目要求肯定不同,这里不做过多讨论,只简单的说一下自己的想法,结合以上的特征总结如下:

  • 1.首页数据、分类数据这些数据属于热点数据,首页数据更是热得发烫,而且这类数据一般实时性不高,不会频繁的去操作,比较适合放入缓存。
  • 2.详情数据,比如文章详情、商品详情、广告详情、个人信息详情,这些数据库中单条的的数据可以以其id生成不同的key保存到Redis,操作比较简单明了,在更新或者删除的时候需要同步更新Redis中的数据,这类数据也适合放入缓存中。
  • 3.列表数据不是特别推荐,除非是实时性和改变频率真的很低的情况下,因为列表往往牵涉的数据和操作很多,处理起来比较复杂,如果对实时性要求低的话、或者部分字段更新频率低的话,可以换成这部分数据。

缓存存储策略的制定说难也难,说容易也容易,主要是根据具体的业务场景合理的操作即可,以上只是做了一个简单的总结。

缓存失效策略:

失效策略一定要做好,血的教训。

  • 定时删除

含义:在设置key的过期时间的同时,为该key创建一个定时器,让定时器在key的过期时间来临时,对key进行删除

优点:保证内存被尽快释放

缺点:
若过期key很多,删除这些key会占用很多的CPU时间,在CPU时间紧张的情况下,CPU不能把所有的时间用来做要紧的事儿,还需要去花时间删除这些key
定时器的创建耗时,若为每一个设置过期时间的key创建一个定时器(将会有大量的定时器产生),性能影响严重

  • 惰性删除

含义:key过期的时候不删除,每次从数据库获取key的时候去检查是否过期,若过期则删除,返回null。

优点:删除操作只发生在从数据库取出key的时候发生,而且只删除当前key,所以对CPU时间的占用是比较少的,而且此时的删除是已经到了非做不可的地步(如果此时还不删除的话,我们就会获取到了已经过期的key了)

缺点:若大量的key在超出超时时间后,很久一段时间内,都没有被获取过,那么可能发生内存泄露(无用的垃圾占用了大量的内存)

  • 定期删除

含义:每隔一段时间执行一次删除过期key操作

优点:
通过限制删除操作的时长和频率,来减少删除操作对CPU时间的占用--处理"定时删除"的缺点
定期删除过期key--处理"惰性删除"的缺点

缺点
在内存友好方面,不如"定时删除"
在CPU时间友好方面,不如"惰性删除"
难点
合理设置删除操作的执行时长(每次删除执行多长时间)和执行频率(每隔多长时间做一次删除)(这个要根据服务器运行情况来定了)

参考《Redis设计与实现》

缓存操作顺序策略:

在上文中已经讲到了操作顺序的问题,是先操作mysql呢?还是先操作Redis呢?这个需要根据自己的业务逻辑来考量,尽量选择影响较小且结合友好的方案来做。

代码实现:

这里只贴出主要的逻辑代码,想要完整实现的可以到代码仓库去取。

//添加
@Override
    public int addArticle(Article article) {
        if (articleDao.insertArticle(article) > 0) {
            log.info("insert article success,save article to Redis");
            RedisUtil.put(Constants.ARTICLE_CACHE_KEY + article.getId(), article);
            return 1;
        }
        return 0;
    }

//修改
    @Override
    public int updateArticle(Article article) {
        if (article.getArticleTitle() == null || article.getArticleContent() == null || getTotalArticle(null) > 90 || article.getArticleContent().length() > 50000) {
            return 0;
        }
        if (articleDao.updArticle(article) > 0) {
            log.info("update article success,delete article in Redis and save again");
            RedisUtil.del(Constants.ARTICLE_CACHE_KEY + article.getId());
            RedisUtil.put(Constants.ARTICLE_CACHE_KEY + article.getId(), article);
            return 1;
        }
        return 0;
    }

//删除
    @Override
    public int deleteArticle(String id) {
        RedisUtil.del(Constants.ARTICLE_CACHE_KEY + id);
        return articleDao.delArticle(id);
    }

//查询
    @Override
    public Article findById(String id) {
        log.info("get article by id:" + id);
        Article article = (Article) RedisUtil.get(Constants.ARTICLE_CACHE_KEY + id, Article.class);
        if (article != null) {
            log.info("article in Redis");
            return article;
        }
        Article articleFromMysql = articleDao.getArticleById(id);
        if (articleFromMysql != null) {
            log.info("get article from mysql and save article to Redis");
            RedisUtil.put(Constants.ARTICLE_CACHE_KEY + articleFromMysql.getId(), articleFromMysql);
            return articleFromMysql;
        }
        return null;
    }

结语

首发于我的个人博客,新的项目演示地址:perfect-ssm,登录账号:admin,密码:123456

image

如果有问题或者有一些好的创意,欢迎给我留言,也感谢向我指出项目中存在问题的朋友。

如果你想继续了解该项目可以查看整个系列文章Spring+SpringMVC+MyBatis+easyUI整合系列文章,也可以到我的GitHub仓库或者开源中国代码仓库中查看源码及项目文档。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,558评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,002评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,024评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,144评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,255评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,295评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,068评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,478评论 1 305
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,789评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,965评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,649评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,267评论 3 318
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,982评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,223评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,800评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,847评论 2 351

推荐阅读更多精彩内容