《白话深度学习与Tensorflow》学习笔记(2)

1、CUDA(compute unified device architecture)可用于并行计算:

GTX1060 CUDA核心数:1280 显存大小:6G

2、随机梯度下降:计算偏导数需要的计算量很大,而采用随机梯度下降(即采用采样的概念)从中提取一部分样本来,这些样本中的特征已经可以在一定程度上代表完整训练集的特征。 Tensorflow中可以指定一个batch的size,规定每次被随机选择参与归纳的样本数。

3、梯度消失与梯度爆炸问题:

梯度消失:两个节点相连的神经网络,在使用链式法则的时候,会对导数进行连乘。即使用Sigmoid函数在自变量很大或者很小的时候,由下图可以看出,导数接近于0,这样在导数连乘的时候会使得w没什么变化。



Sigmoid激活函数

而对于这种问题比较好的解决方案是改用ReLu(修正线性单元)激活函数,如下图所示:


ReLu激活函数(修正线性单元)

这样在第一象限中导数恒为1,不会很容易出现很大很小的值,求解复合函数的导数更简单。

4、归一化:

一般采用线性函数归一化(max-min)、0均值标准化(z-score standardization),在深度学习中,常见的是使用batch-normalization,这样可以让网络尽可能避免没有数据,代码为:

h2=tf.contrib.layers.batch_norm(h1,center=True,scale=True,is_training=false,scope=’bn’).

5、参数初始化问题:

常见的初始化为使用以0为均值,1为方差的分布生成后除以当前层的神经单元个数的算术平方根。或者初始为以0为均值,以很小的值为标准差的正态分布的方式。

中心极限定理:任何独立随机变量和极限分布都为正态分布。

6、正则化:

为防止出现过拟合问题,则进行正则化约束。方法是在损失函数中加入一个正则化项,以防止模型的规模过大所产生的过拟合。


正则化公式


正则化项

这个因子的含义是把整个模型中所有的权重w的绝对值加起来,lamda是惩罚因子,表示对这一项的重视程度。

L1正则化项即采用L1范数,L2正则化就是所有权重的平方之和。

C0往往是经验风险,即误差所带来的代价,其收敛中心点记为黑色圆的圆心,其收敛中心为精确解,而蓝色的圆中心为正则化项的收敛点,即结构风险的最小化的收敛点,那么引入正则化项后,黑色大圆与蓝色圆相切的切点即为最后模型的收敛点。


结构化风险与经验风险可视化

7、其他超参数:有一些值需要在算法训练之前设定,无法通过学习获得,这就需要经验获得或者进行一定的预估、尝试。比如深度学习中的学习率,K-means算法中的簇数k.

8、Dropout:方法的目的在于克制过拟合状态,由于网络VC维很高,记忆能力很强,所以有些细枝末节的特征也会被网络记忆,从而削弱网络整体的泛化性能,使得其没有办法在验证集通过,仅有较好的训练集分类性能。这时候选择性的(随机)临时丢弃(关闭)一些节点,可以降低VC维,减小过拟合风险。

Keep_prob=tf.placehoder(tf.float32)

H_fc1_drop=tf.nn.dropout(h_fc1,keep_prob)

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容