Pycharm无法自动补全新版本(1.6.0)Pytorch的nn模块

问题描述

安装了pytorch最新版本1.6之后,在pycharm中编辑python代码时,输入torch.nn.看不到提示了,比如torch.nn.MSELoss()。而在1.4及以前的版本中,直接输入torch.nn.就会自动提示出很多torch.nn.modules中的API。
该问题的讨论在前几年有过不少(https://www.zhihu.com/question/279645242/answer/520263986
),但都是基于老版本,经过尝试,对于1.6版本是无效的。

原因分析

pycharm的自动提示是根据第三方包的每个文件夹下的init.pyi文件来显示的,只有init.pyi中import了的API才会被pycharm自动提示。

首先对pytorch.nn模块要知道,问题描述中提到的MSELoss等众多函数,真实位置是torch.nn.modules.MSELoss(),你直接调用这个真实位置是可以自动提示的。但是1.4及以前的版本中大家都熟悉了直接用nn.MSELoss()这样调用,如何让1.6版本也能像历史版本一样提示呢?

基于此,我对比了1.6和1.4的区别。
在torch 1.6版本包存放位置下,torch/nn/下是有init.pyi的,里面有一行from .modules import *,说明nn模块是可以直接调用子模块modules中的API的,所以直接调用nn.MSELoss()不会报错,只是不会自动提示。
然后在进入torch/nn/modules/发现,1.6版本中缺少init.pyi文件,所以在pycharm输入nn.的时候并不会提示子模块modules中的API。

解决方案

从pytorch 1.4版本中复制一份init.pyi文件到1.6版本的依赖包的相同目录下。具体位置是{你的第三方包存放位置}/Lib/site-packages/torch/nn/modules/init.pyi
然后就可以在pycharm中愉快使用nn.自动提示了。其他模块不自动提示的,解决方法类同。

补充

关于解决方案中第三方包存放位置不知道的,可以在pycharm左侧项目目录结构中看到一项External Libraries,点开它,你就能直接找到Lib/site-packages/torch/nn/modules/,从而不必去资源管理器找。


附件 init.pyi

from .module import Module as Module
from .activation import CELU as CELU, ELU as ELU, GLU as GLU, GELU as GELU, Hardshrink as Hardshrink, \
    Hardtanh as Hardtanh, LeakyReLU as LeakyReLU, LogSigmoid as LogSigmoid, LogSoftmax as LogSoftmax, PReLU as PReLU, \
    RReLU as RReLU, ReLU as ReLU, ReLU6 as ReLU6, SELU as SELU, Sigmoid as Sigmoid, Softmax as Softmax, \
    Softmax2d as Softmax2d, Softmin as Softmin, Softplus as Softplus, Softshrink as Softshrink, Softsign as Softsign, \
    Tanh as Tanh, Tanhshrink as Tanhshrink, Threshold as Threshold
from .adaptive import AdaptiveLogSoftmaxWithLoss as AdaptiveLogSoftmaxWithLoss
from .batchnorm import BatchNorm1d as BatchNorm1d, BatchNorm2d as BatchNorm2d, BatchNorm3d as BatchNorm3d, \
    SyncBatchNorm as SyncBatchNorm
from .container import Container as Container, ModuleDict as ModuleDict, ModuleList as ModuleList, \
    ParameterDict as ParameterDict, ParameterList as ParameterList, Sequential as Sequential
from .conv import Conv1d as Conv1d, Conv2d as Conv2d, Conv3d as Conv3d, ConvTranspose1d as ConvTranspose1d, \
    ConvTranspose2d as ConvTranspose2d, ConvTranspose3d as ConvTranspose3d
from .distance import CosineSimilarity as CosineSimilarity, PairwiseDistance as PairwiseDistance
from .dropout import AlphaDropout as AlphaDropout, Dropout as Dropout, Dropout2d as Dropout2d, Dropout3d as Dropout3d, \
    FeatureAlphaDropout as FeatureAlphaDropout
from .fold import Fold as Fold, Unfold as Unfold
from .instancenorm import InstanceNorm1d as InstanceNorm1d, InstanceNorm2d as InstanceNorm2d, \
    InstanceNorm3d as InstanceNorm3d
from .linear import Bilinear as Bilinear, Identity as Identity, Linear as Linear
from .loss import BCELoss as BCELoss, BCEWithLogitsLoss as BCEWithLogitsLoss, CTCLoss as CTCLoss, \
    CosineEmbeddingLoss as CosineEmbeddingLoss, CrossEntropyLoss as CrossEntropyLoss, \
    HingeEmbeddingLoss as HingeEmbeddingLoss, KLDivLoss as KLDivLoss, L1Loss as L1Loss, MSELoss as MSELoss, \
    MarginRankingLoss as MarginRankingLoss, MultiLabelMarginLoss as MultiLabelMarginLoss, \
    MultiLabelSoftMarginLoss as MultiLabelSoftMarginLoss, MultiMarginLoss as MultiMarginLoss, NLLLoss as NLLLoss, \
    NLLLoss2d as NLLLoss2d, PoissonNLLLoss as PoissonNLLLoss, SmoothL1Loss as SmoothL1Loss, \
    SoftMarginLoss as SoftMarginLoss, TripletMarginLoss as TripletMarginLoss
from .module import Module as Module
from .normalization import CrossMapLRN2d as CrossMapLRN2d, GroupNorm as GroupNorm, LayerNorm as LayerNorm, \
    LocalResponseNorm as LocalResponseNorm
from .padding import ConstantPad1d as ConstantPad1d, ConstantPad2d as ConstantPad2d, ConstantPad3d as ConstantPad3d, \
    ReflectionPad1d as ReflectionPad1d, ReflectionPad2d as ReflectionPad2d, ReplicationPad1d as ReplicationPad1d, \
    ReplicationPad2d as ReplicationPad2d, ReplicationPad3d as ReplicationPad3d, ZeroPad2d as ZeroPad2d
from .pixelshuffle import PixelShuffle as PixelShuffle
from .pooling import AdaptiveAvgPool1d as AdaptiveAvgPool1d, AdaptiveAvgPool2d as AdaptiveAvgPool2d, \
    AdaptiveAvgPool3d as AdaptiveAvgPool3d, AdaptiveMaxPool1d as AdaptiveMaxPool1d, \
    AdaptiveMaxPool2d as AdaptiveMaxPool2d, AdaptiveMaxPool3d as AdaptiveMaxPool3d, AvgPool1d as AvgPool1d, \
    AvgPool2d as AvgPool2d, AvgPool3d as AvgPool3d, FractionalMaxPool2d as FractionalMaxPool2d, \
    FractionalMaxPool3d as FractionalMaxPool3d, LPPool1d as LPPool1d, LPPool2d as LPPool2d, MaxPool1d as MaxPool1d, \
    MaxPool2d as MaxPool2d, MaxPool3d as MaxPool3d, MaxUnpool1d as MaxUnpool1d, MaxUnpool2d as MaxUnpool2d, \
    MaxUnpool3d as MaxUnpool3d
from .rnn import GRU as GRU, GRUCell as GRUCell, LSTM as LSTM, LSTMCell as LSTMCell, RNN as RNN, RNNBase as RNNBase, \
    RNNCell as RNNCell, RNNCellBase as RNNCellBase
from .sparse import Embedding as Embedding, EmbeddingBag as EmbeddingBag
from .upsampling import Upsample as Upsample, UpsamplingBilinear2d as UpsamplingBilinear2d, \
    UpsamplingNearest2d as UpsamplingNearest2d
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,039评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,223评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,916评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,009评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,030评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,011评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,934评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,754评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,202评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,433评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,590评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,321评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,917评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,568评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,738评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,583评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,482评论 2 352

推荐阅读更多精彩内容