几何位置判断点 线关系[转]

方法1:
已知P(0,0), Q(3,2)两点,试判断P,Q是否在直线2x+3y=4的同一侧。

解:直线2x+3y=4即 直线2x+3y-4=0
把P、Q代入2x+3y-4
得到
20+30-4=-4 < 0
23+32-4=8 > 0
所以在两侧!

方法2:

怎么判断坐标为(xp,yp)的点P是在直线的哪一侧呢? (注:这里的直线是有方向性的!)

设直线是由其上两点(x1,y1),(x2,y2)确定的,直线方向是由(x1,y1)到(x2,y2)的方向。

假设直线方程为:Ax+By+C=0,则有:

A=y2-y1
B=x1-x2
C=x2*y1-x1*y2
D=A*xp + B*yp + C

若D<0,则点P在直线的左侧;
若D>0,则点P在直线的右侧;
若D=0,则点P在直线上。

方法3:利用矢量计算快速判定一点在直线的哪一侧

例如矢量A × 矢量B = 矢量C设想矢量A沿小于180度的角度转向矢量B将右手的四指指向矢量A的方向,右手的四指弯曲代表上述旋转方向,则伸直的拇指指向它们的叉乘得到的矢量C如果矢量C的方向相同,则在同侧;否则在两侧。

若将向量用坐标表示(三维向量),向量a=(x1,y1,z1),向量b=(x2,y2,z2),则:

点乘,也叫向量的内积、数量积、点积。

 向量a·向量b = |a|*|b|*cosθ
            = x1*x2 + y1*y2 + z1*z2

叉乘,也叫向量的外积、向量积、叉积。

  |向量c| = |向量a×向量b| = |a|*|b|*sinθ

向量c的方向与a,b所在的平面垂直,且方向要用“右手法则”判断 (用右手的四指先表示向量a的方向,然后手指朝着手心的方向<180摆动到向量b的方向,大拇指所指的方向就是向量c的方向);

 向量a×向量b =  | i   j   k |
          | x1  y1  z1|
          | x2  y2  z2|
        = (y1*z2-y2*z1, x2*z1-x1*z2, x1*y2-x2*y1)

(i、j、k分别为空间中相互垂直的三条坐标轴的单位向量)即
 i=(1,0,0)  j=(0,1,0) k=(0,0,1)

向量的外积不遵守乘法交换率

 向量a × 向量b = -向量b × 向量a
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,591评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,448评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,823评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,204评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,228评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,190评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,078评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,923评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,334评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,550评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,727评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,428评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,022评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,672评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,826评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,734评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,619评论 2 354

推荐阅读更多精彩内容

  • 基于学生学习共同体培育语文生态课堂文化的研究 近年来,随着现代教育理念的不断深入与...
    火车头123阅读 1,988评论 0 8
  • 引言 当面对的数据被抽象为一组向量,那么有必要研究一些向量的数学性质。而这些数学性质将成为PCA的理论基础。 理论...
    MapleLeaff阅读 16,283评论 8 28
  • 【概述】 SVM训练分类器的方法是寻找到超平面,使正负样本在超平面的两侧(分类正确性即“分得开”),且样本到超平面...
    sealaes阅读 11,072评论 0 7
  • 原文:http://blog.codinglabs.org/articles/pca-tutorial.html ...
    mogu酱阅读 2,340评论 0 21
  • 老师说下课,然后速走出教室门,当然是直奔食堂的了。有饭友吗?有的,只是不一起吃饭罢了。一个人的好天气,一个人...
    你好呀我是慧慧阅读 348评论 0 0