本文仅练习爬虫程序的编写,并无保存任何数据,网址接口已经打码处理。
我们通过分析网络请求可以看到有这两个json文件:
https://xxx.cn/www/2.0/schoolprovinceindex/2018/318/12/1/1.json
https://xxx..cn/www/2.0/schoolspecialindex/2018/31/11/1/1.json
其中318是学校id,12是省份id,代表的是天津
分别对应着学校各省分数线以及和各专业分数线
因此我们当前页面的代码为:
import requests
HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;",
"Accept-Language": "zh-CN,zh;q=0.8",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0",
'Referer': 'https://xxx.cn/school/search'
}
url = 'https://xxx.cn/www/2.0/schoolprovinceindex/2018/1217/12/1/1.json'
response = requests.get(url,headers=HEADERS)
print(response.json())
接下来我们就要想办法获取学校id了,同样我们分析到:
https://xxxl.cn/gkcx/api/?uri=apigkcx/api/school/hotlists
通过post如下数据:
data = {"access_token":"","admissions":"","central":"","department":"","dual_class":"","f211":"","f985":"","is_dual_class":"","keyword":"","page":2,"province_id":"","request_type":1,"school_type":"","size":20,"sort":"view_total","type":"","uri":"apigkcx/api/school/hotlists"}
我们可以看到一个参数是page,对应着页码:
所以我们这部分的代码为:
import requests
HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;",
"Accept-Language": "zh-CN,zh;q=0.8",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0",
'Referer': 'https://xxx.cn/school/search'
}
url = 'https://xxx.cn/gkcx/api/?uri=apigkcx/api/school/hotlists'
data = {"access_token":"","admissions":"","central":"","department":"","dual_class":"","f211":"","f985":"","is_dual_class":"","keyword":"","page":2,"province_id":"","request_type":1,"school_type":"","size":20,"sort":"view_total","type":"","uri":"apigkcx/api/school/hotlists"}
response = requests.post(url,headers=HEADERS,data=data)
print(response.json())
我们处理一下就可以获得学校的id,为了美观和之后数据处理我们加到字典里,
import requests
HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;",
"Accept-Language": "zh-CN,zh;q=0.8",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0",
'Referer': 'https://xxx.cn/school/search'
}
school_info = []
def get_schoolid(pagenum):
url = 'https://xxx.cn/gkcx/api/?uri=apigkcx/api/school/hotlists'
data = {"access_token":"","admissions":"","central":"","department":"","dual_class":"","f211":"","f985":"","is_dual_class":"","keyword":"","page":pagenum,"province_id":"","request_type":1,"school_type":"","size":20,"sort":"view_total","type":"","uri":"apigkcx/api/school/hotlists"}
response = requests.post(url,headers=HEADERS,data=data)
school_json = response.json()
schools = school_json['data']['item']
for school in schools:
school_id = school['school_id']
school_name = school['name']
school_dict = {
'id':school_id,
'name':school_name
}
school_info.append(school_dict)
def main():
get_schoolid(2)
print(school_info)
if __name__ == '__main__':
main()
结果如下:
因为之后我们想要遍历所有页面的学校id,所以保留了一个pagenum参数,用作循环。
接下来就是添加上获取相应简略信息以及详细专业分数:
import requests
HEADERS = {
"Accept": "text/html,application/xhtml+xml,application/xml;",
"Accept-Language": "zh-CN,zh;q=0.8",
"User-Agent": "Mozilla/5.0 (Windows NT 10.0; Win64; x64; rv:67.0) Gecko/20100101 Firefox/67.0",
'Referer': 'https://xxx.cn/school/search'
}
school_info = []
simple_list = []
pro_list = []
name_list = []
def get_schoolid(pagenum):
url = 'https://xxx.cn/gkcx/api/?uri=apigkcx/api/school/hotlists'
data = {"access_token":"","admissions":"","central":"","department":"","dual_class":"","f211":"","f985":"","is_dual_class":"","keyword":"","page":pagenum,"province_id":"","request_type":1,"school_type":"","size":20,"sort":"view_total","type":"","uri":"apigkcx/api/school/hotlists"}
response = requests.post(url,headers=HEADERS,data=data)
school_json = response.json()
schools = school_json['data']['item']
for school in schools:
school_id = school['school_id']
school_name = school['name']
school_dict = {
'id':school_id,
'name':school_name
}
school_info.append(school_dict)
def get_info(id,name):
simple_url = 'https://xxx.cn/www/2.0/schoolprovinceindex/2018/%s/12/1/1.json'%id
simple_response = requests.get(simple_url,headers=HEADERS)
simple_info = simple_response.json()['data']['item'][0]
simple_infodict = {
'name':name,
'max':simple_info['max'],
'min':simple_info['min'],
'average':simple_info['average'],
'local_batch_name':simple_info['local_batch_name']
}
simple_list.append(simple_infodict)
def get_score(id,name):
professional_url = 'https://xxx.cn/www/2.0/schoolspecialindex/2018/%s/12/1/1.json'%id
professional_response = requests.get(professional_url,headers=HEADERS)
for pro_info in professional_response.json()['data']['item']:
pro_dict = {
'name':name,
'spname':pro_info['spname'],
'max':pro_info['max'],
'min':pro_info['min'],
'average':pro_info['average'],
'min_section':pro_info['min_section'],
'local_batch_name':pro_info['local_batch_name']
}
pro_list.append(pro_dict)
def main():
print('\033[0;36m='*15+'2018全国高校录取分数信息查询系统'+'='*15+'\033[0m'+'\n')
get_schoolid(1)
for school in school_info:
id = school['id']
name = school['name']
try:
get_info(id,name)
print('[*]正在抓取2018%s在天津市录取分数信息'%name)
except:
print('[*]%s暂时未查到录取分数信息'%name)
try:
get_score(id,name)
print('[*]正在抓取2018%s专业分数线信息'%name)
except:
print('[*]%s暂时未查专业分数线信息'%name)
print('\033[0;36m[*]信息抓取结束,即将开始整理信息\033[0m')
print('\033[0;36m[*]即将展示天津市各高校2018分数信息\033[0m')
for school in simple_list:
print('学校名称:{name},最高分:{max},最低分:{min},平均分:{average}'.format(**school))
print('\033[0;36m[*]即将展示天津市各高校2018专业分数线信息\033[0m')
for school in pro_list:
print('学校名称:{name},专业名称:{spname},最高分:{max},最低分:{min},平均分:{average},最低位次:{min_section}'.format(**school))
if __name__ == '__main__':
main()
因为一共有142页,io密集型可以使用多线程提高爬虫速度,但是要注意共同变量的问题,由于之前总结过python多线程的相关内容,接下来我们可以通过pandas保存到excel,我们可以先将字典转换成dataframe,然后保存为excel。
也可以通过pyecharts等进行数据分析。