Pandas-创建数据

创建数据

随机数据

创建一个Series,pandas可以生成一个默认的索引

s = pd.Series([1,3,5,np.nan,6,8])

通过numpy创建DataFrame,包含一个日期索引,以及标记的列

dates = pd.date_range('20170101', periods=6)
df = pd.DataFrame(np.random.randn(6,4), index=dates, columns=list('ABCD'))

df
Out[4]: 
                   A         B         C         D
2016-10-10  0.630275  1.081899 -1.594402 -2.571683
2016-10-11 -0.211379 -0.166089 -0.480015 -0.346706
2016-10-12 -0.416171 -0.640860  0.944614 -0.756651
2016-10-13  0.652248  0.186364  0.943509  0.053282
2016-10-14 -0.430867 -0.494919 -0.280717 -1.327491
2016-10-15  0.306519 -2.103769 -0.019832  0.035211

其中,np.random.randn可以返回一个随机数组

通过Dict创建

df2 = pd.DataFrame({ 'A' : 1.,
                     'B' : pd.Timestamp('20130102'),
                     'C' : pd.Series(1,index=list(range(4)),dtype='float32'),
                     'D' : np.array([3] * 4,dtype='int32'),
                     'E' : pd.Categorical(["test","train","test","train"]),
                     'F' : 'foo' })
                     
Out[20]: 
     A          B    C  D      E    F
0  1.0 2013-01-02  1.0  3   test  foo
1  1.0 2013-01-02  1.0  3  train  foo
2  1.0 2013-01-02  1.0  3   test  foo
3  1.0 2013-01-02  1.0  3  train  foo

通过nparray创建

data = [[2000,1,2],
[2001,1,3]
]

df = pd.DataFrame(data,
        index=['one','two'],
        columns=['year','state','pop'])
        
        
# 也可以转置后创建
out = array([data_real_np, ydz_np]).T
df = pd.DataFrame(out)
df.to_csv('final.csv', encoding='utf-8', index=0, header=None)

创建TimeStamp

有几个方法可以构造一个Timestamp对象

  • pd.Timestamp
import pandas as pd
from datetime import datetime as dt
p1=pd.Timestamp(2017,6,19)
p2=pd.Timestamp(dt(2017,6,19,hour=9,minute=13,second=45))
p3=pd.Timestamp("2017-6-19 9:13:45")

print("type of p1:",type(p1))
print(p1)
print("type of p2:",type(p2))
print(p2)
print("type of p3:",type(p3))
print(p3)


('type of p1:', <class 'pandas.tslib.Timestamp'>)
2017-06-19 00:00:00
('type of p2:', <class 'pandas.tslib.Timestamp'>)
2017-06-19 09:13:45
('type of p3:', <class 'pandas.tslib.Timestamp'>)
2017-06-19 09:13:45
  • to_datetime()
import pandas as pd
from datetime import datetime as dt

p4=pd.to_datetime("2017-6-19 9:13:45")
p5=pd.to_datetime(dt(2017,6,19,hour=9,minute=13,second=45))

print("type of p4:",type(p4))
print(p4)
print("type of p5:",type(p5))
print(p5)

('type of p4:', <class 'pandas.tslib.Timestamp'>)
2017-06-19 09:13:45
('type of p5:', <class 'pandas.tslib.Timestamp'>)
2017-06-19 09:13:45
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,258评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,335评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,225评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,126评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,140评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,098评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,018评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,857评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,298评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,518评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,400评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,993评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,638评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,661评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容