machine learning : 机器学习
deep learning : 深度学习
image processing : 图像处理
natural language processing : 自然语言处理
algorithms : 算法
training data set : 训练数据集
facial detection : 面部识别
malware detection : 恶意程序检测
adversarial sample : 对抗样本
countermeasuring techniques : 防御技术
Indiscriminate Attack:非针对性攻击
Adversary’s goal:敌手目标
Adversary’s knowledge :敌手知识
Adversary’s capability:敌手能力
Attack strategy:攻击策略
Gradient Ascent Strategy:梯度下降策略
Generative Model:生成模型
Discriminative model:判别模型
The Direct Gradient:直接梯度法
Accuracy:准确率
Loss:损失值
White-Box Attack:白盒攻击
Blank-Box Attack:黑盒攻击
Reconstruction Attack:重建攻击
Proactive Defense:主动防御
Reactive Defense:被动防御
Reject On Negative Impact:拒绝消极影响
Stackelberg Games:斯塔克尔伯格博弈
Defensive Distillation:防御精馏
Differential Privacy:差分隐私
Homomorphic Encryption:同态加密
Pattern Recognition:模式识别
RNN, Recurrent Neural Networks:循环神经网络
FNNs(Feed-forward Neural Networks):前向反馈神经网络
Convolutional layer:卷积层
Rectified Linear Units layer,ReLU layer:线性整流层
Pooling layer :池化层
Fully-Connected layer:全连接层
Face Recognition System :面部识别系统 (FRS)
Adversarial Classification : 敌手分类
Adversarial Learning :对抗学习
try-and-error:试错
Causative Attack :诱发型攻击
Security Violation :安全损害
Integrity Attack :完整性攻击
Availability Attack:可用性攻击
Privacy Violation Attack :隐私窃取攻击
Specificity of an Attack :攻击的专一性
Obfuscation Attacks:迷惑攻击
Counterintuitive:反直觉
Poisoning Attack:投毒攻击
Centroid:中心值
Bridge:桥
Spoofing Attack :欺骗攻击
Avoiding Attack:逃避攻击
Impersonate Attack:模仿攻击
The Least Likely Class:最小相似类
Inversion Attack:逆向攻击
Confidence Values:置信值
Equation-Solving Attacks:等式求解攻击
Model Extraction Attacks:模型提取攻击
Arms Race:攻防技术竞赛
Non-stationary:不平稳
Data Sanitization:数据清洗
Randomized Prediction Games:随机预测博弈
Deep Contractive Networks:深度收缩网络
Crowdsourcing:众包
Randomized Response:随机响应
Logistic Regression:逻辑回归
regression analysis:回归分析