数据结构之图

1.为什么要有图

1)前面我们学了线性表和树

2)线性表局限于一个直接前驱和一个直接后继的关系

3)树也只能有一个直接前驱也就是父节点

4)当我们需要表示多对多的关系时, 这里我们就用到了图

  • 图是一种数据结构,其中结点可以具有零个或多个相邻元素。两个结点之间的连接称为边。结点也可以称为顶点。如图:
1561806847749.png

2.图的表示方式

图的表示方式有两种:二维数组表示(邻接矩阵);链表表示(邻接表)。

2.1邻接矩阵

邻接矩阵是表示图形中顶点之间相邻关系的矩阵,对于n个顶点的图而言,矩阵是的row和col表示的是1....n个点。

1561806938887.png

2.2邻接表

1)邻接矩阵需要为每个顶点都分配n个边的空间,其实有很多边都是不存在,会造成空间的一定损失.

2)邻接表的实现只关心存在的边,不关心不存在的边。因此没有空间浪费,邻接表由数组+链表组成

1561807113709.png
1561807089651.png

3.入门

1)要求: 代码实现如下图结构.

代码:

package cn.smallmartial;

import java.util.ArrayList;
import java.util.Arrays;

/**
 * @Author smallmartial
 * @Date 2019/6/29
 * @Email smallmarital@qq.com
 */
public class Graph {

    private ArrayList<String> vertexList; //储存顶点集合

    private int[][] edges; //存储对应的邻接矩阵

    private int numOfEdges; //表示边的数目

    public static void main(String[] args) {
        int n = 5;
        String Vertexs[] = {"A","B","C","D","E"};
        //创建对象
        Graph graph = new Graph(n);
        for (String vertex : Vertexs) {
            graph.insertVertex(vertex);
        }
        //添加边
        //A-B A-C
        graph.insertEdge(0,1,1);
        graph.insertEdge(0,2,1);
        graph.insertEdge(1,2,1);
        graph.insertEdge(1,3,1);
        graph.insertEdge(1,4,1);

        //显示邻接矩阵
        graph.show();
//        int weight = graph.getWeight(0, 1);
//        System.out.println(weight);
    }
    //显示矩阵
    public void show(){
        for (int[] link : edges) {
            System.out.println(Arrays.toString(link));
        }
    }

    //得到边的数目
    public int getNumOfEdges(){
        return numOfEdges;
    }
    //返回节点对应的数据 0 ->"A" 1->"B" 2->"C"
    public String getValueByIndex(int i){
        return vertexList.get(i);
    }

    //返回v1和v2的权值
    public int getWeight(int v1, int v2){
        return edges[v1][v2];
    }


    public Graph(int n) {
        //初始化节点
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOfEdges = 0;
    }

    //插入节点
    public void insertVertex(String vertex){
        vertexList.add(vertex);
    }

    //添加边
    public void insertEdge(int v1, int v2,  int weight){
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }

}

运行结果:

1561809150608.png

4.图的遍历介绍

所谓图的遍历,即是对结点的访问。一个图有那么多个结点,如何遍历这些结点,需要特定策略,一般有两种访问策略: (1)深度优先遍历 (2)广度优先遍历

4.1深度优先遍历基本思想

图的深度优先搜索(Depth First Search) 。

1)深度优先遍历,从初始访问结点出发,初始访问结点可能有多个邻接结点,深度优先遍历的策略就是首先访问第一个邻接结点,然后再以这个被访问的邻接结点作为初始结点,访问它的第一个邻接结点, 可以这样理解:每次都在访问完当前结点后首先访问当前结点的第一个邻接结点

2)我们可以看到,这样的访问策略是优先往纵向挖掘深入,而不是对一个结点的所有邻接结点进行横向访问。

3)显然,深度优先搜索是一个递归的过程

4.2深度优先遍历算法步骤

1)访问初始结点v,并标记结点v为已访问。

2)查找结点v的第一个邻接结点w。

3)若w存在,则继续执行4,如果w不存在,则回到第1步,将从v的下一个结点继续。

4)若w未被访问,对w进行深度优先遍历递归(即把w当做另一个v,然后进行步骤123)。

5)查找结点v的w邻接结点的下一个邻接结点,转到步骤3。

代码:

package cn.smallmartial;

import java.util.ArrayList;
import java.util.Arrays;

/**
 * @Author smallmartial
 * @Date 2019/6/29
 * @Email smallmarital@qq.com
 */
public class Graph {

    private ArrayList<String> vertexList; //储存顶点集合

    private int[][] edges; //存储对应的邻接矩阵

    private int numOfEdges; //表示边的数目

    private boolean[] isVisited ;

    public static void main(String[] args) {
        int n = 5;
        String Vertexs[] = {"A","B","C","D","E"};
        //创建对象
        Graph graph = new Graph(n);
        for (String vertex : Vertexs) {
            graph.insertVertex(vertex);
        }
        //添加边
        //A-B A-C
        graph.insertEdge(0,1,1);
        graph.insertEdge(0,2,1);
        graph.insertEdge(1,2,1);
        graph.insertEdge(1,3,1);
        graph.insertEdge(1,4,1);

        //显示邻接矩阵
        graph.show();
//        int weight = graph.getWeight(0, 1);
//        System.out.println(weight);
        System.out.println("深度遍历:");
        graph.dfs();
    }
    //显示矩阵
    public void show(){
        for (int[] link : edges) {
            System.out.println(Arrays.toString(link));
        }
    }

    //得到边的数目
    public int getNumOfEdges(){
        return numOfEdges;
    }
    //返回节点对应的数据 0 ->"A" 1->"B" 2->"C"
    public String getValueByIndex(int i){
        return vertexList.get(i);
    }

    //返回v1和v2的权值
    public int getWeight(int v1, int v2){
        return edges[v1][v2];
    }


    public Graph(int n) {
        //初始化节点
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOfEdges = 0;
        isVisited = new boolean[5];
    }
    //得到第一个邻接节点的下标w
    public int getFirstNeighbor(int index){
        for (int j = 0; j < vertexList.size(); j++) {
            if (edges[index][j]>0){
                return j;
            }
        }
        return -1;
    }
    //根据前一个邻接节点的下标获取下一个节点的邻接节点
    public int getNextNeighbor(int v1, int v2){
        for (int j = v2+1; j < vertexList.size(); j++) {
            if (edges[v1][j]>0){
                return j;
            }
        }
        return -1;
    }

    //深度优先遍历
    public void dfs(boolean[] isVisited, int i){
        //首先访问该节点,输出
        System.out.print(getValueByIndex(i)+"->");
        //将节点设置为已经访问
        isVisited[i] = true;
        //查找结点i的第一个邻接结点w
        int w = getFirstNeighbor(i);
        while (w != -1){
            if (!isVisited[w]){
                dfs(isVisited,w);
            }
            //如果w已经被访问
            w = getNextNeighbor(i,w);
        }
    }

    //对dfs进行重载 遍历所有节点
    public void dfs(){
        //遍历所有的节点
        for (int i = 0; i < getNumOfEdges(); i++) {
            if(!isVisited[i]){
                dfs(isVisited,i);
            }
        }
    }
    //插入节点
    public void insertVertex(String vertex){
        vertexList.add(vertex);
    }

    //添加边
    public void insertEdge(int v1, int v2,  int weight){
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }

}

运行结果:

1561810847125.png

4.3广度优先遍历基本思想

图的广度优先搜索(Broad First Search) 。

类似于一个分层搜索的过程,广度优先遍历需要使用一个队列以保持访问过的结点的顺序,以便按这个顺序来访问这些结点的邻接结点

4.4广度优先遍历算法步骤

1)访问初始结点v并标记结点v为已访问。

2)结点v入队列

3)当队列非空时,继续执行,否则算法结束。

4)出队列,取得队头结点u。

5)查找结点u的第一个邻接结点w。

6)若结点u的邻接结点w不存在,则转到步骤3;否则循环执行以下三个步骤:

6.1 若结点w尚未被访问,则访问结点w并标记为已访问。

6.2 结点w入队列

6.3 查找结点u的继w邻接结点后的下一个邻接结点w,转到步骤6。

package cn.smallmartial;

import java.util.ArrayList;
import java.util.Arrays;
import java.util.LinkedList;

/**
 * @Author smallmartial
 * @Date 2019/6/29
 * @Email smallmarital@qq.com
 */
public class Graph {

    private ArrayList<String> vertexList; //储存顶点集合

    private int[][] edges; //存储对应的邻接矩阵

    private int numOfEdges; //表示边的数目

    private boolean[] isVisited ;

    public static void main(String[] args) {
        int n = 5;
        String Vertexs[] = {"A","B","C","D","E"};
        //创建对象
        Graph graph = new Graph(n);
        for (String vertex : Vertexs) {
            graph.insertVertex(vertex);
        }
        //添加边
        //A-B A-C
        graph.insertEdge(0,1,1);
        graph.insertEdge(0,2,1);
        graph.insertEdge(1,2,1);
        graph.insertEdge(1,3,1);
        graph.insertEdge(1,4,1);

        //显示邻接矩阵
        graph.show();
//        int weight = graph.getWeight(0, 1);
//        System.out.println(weight);
        System.out.println("深度遍历:");
        //graph.dfs();
        System.out.println("广度优先");
        graph.bfs();
    }

    //遍历所有的节点都进行广度优先遍历
    public void bfs(){
        for (int i = 0; i < getNumOfVertex(); i++) {
            if (!isVisited[i]){
                bfs(isVisited,i);
            }
        }
    }
    //返回节点的个数
    public int getNumOfVertex(){
        return vertexList.size();
    }
    //显示矩阵
    public void show(){
        for (int[] link : edges) {
            System.out.println(Arrays.toString(link));
        }
    }

    //得到边的数目
    public int getNumOfEdges(){
        return numOfEdges;
    }
    //返回节点对应的数据 0 ->"A" 1->"B" 2->"C"
    public String getValueByIndex(int i){
        return vertexList.get(i);
    }

    //返回v1和v2的权值
    public int getWeight(int v1, int v2){
        return edges[v1][v2];
    }


    public Graph(int n) {
        //初始化节点
        edges = new int[n][n];
        vertexList = new ArrayList<String>(n);
        numOfEdges = 0;
        isVisited = new boolean[5];
    }
    //得到第一个邻接节点的下标w
    public int getFirstNeighbor(int index){
        for (int j = 0; j < vertexList.size(); j++) {
            if (edges[index][j]>0){
                return j;
            }
        }
        return -1;
    }
    //根据前一个邻接节点的下标获取下一个节点的邻接节点
    public int getNextNeighbor(int v1, int v2){
        for (int j = v2+1; j < vertexList.size(); j++) {
            if (edges[v1][j]>0){
                return j;
            }
        }
        return -1;
    }

    //深度优先遍历
    public void dfs(boolean[] isVisited, int i){
        //首先访问该节点,输出
        System.out.print(getValueByIndex(i)+"->");
        //将节点设置为已经访问
        isVisited[i] = true;
        //查找结点i的第一个邻接结点w
        int w = getFirstNeighbor(i);
        while (w != -1){
            if (!isVisited[w]){
                dfs(isVisited,w);
            }
            //如果w已经被访问
            w = getNextNeighbor(i,w);
        }
    }

    //对dfs进行重载 遍历所有节点
    public void dfs(){
        //遍历所有的节点
        for (int i = 0; i < getNumOfEdges(); i++) {
            if(!isVisited[i]){
                dfs(isVisited,i);
            }
        }
    }

    //对一个节点进行广度优先遍历的算法
    public void bfs(boolean[] isVisited, int i){
        int u;
        int w;
        LinkedList queue = new LinkedList();
        System.out.print(getValueByIndex(i)+"->");
        isVisited[i] = true;
        queue.addLast(i);
        while (!queue.isEmpty()){
            //取出队列的头节点
            u = (Integer) queue.removeFirst();
            w = getFirstNeighbor(u);
            while (w != -1){
                if (!isVisited[w]){
                    System.out.print(getValueByIndex(w)+"->");
                    isVisited[w] = true;
                    queue.addLast(w);
                }
                w = getNextNeighbor(u,w);//广度优先

            }
        }

    }
    //插入节点
    public void insertVertex(String vertex){
        vertexList.add(vertex);
    }

    //添加边
    public void insertEdge(int v1, int v2,  int weight){
        edges[v1][v2] = weight;
        edges[v2][v1] = weight;
        numOfEdges++;
    }

}

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,843评论 6 502
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,538评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,187评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,264评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,289评论 6 390
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,231评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,116评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,945评论 0 275
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,367评论 1 313
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,581评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,754评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,458评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,068评论 3 327
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,692评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,842评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,797评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,654评论 2 354

推荐阅读更多精彩内容