【DIP】人脸皮肤检测方法汇总

Tags:DIP


HSV 颜色阈值分割

先将图像转换到HSV空间,然后在HSV空间进行阈值分割
两种颜色阈值都可以试试:
[0,10,60]
[20,150,255]

[7,10,60]
[20,150,255]

YCrCb 颜色阈值分割

经验而言, 黄种人皮肤像素值在Cr, Cb空间的分布为:Cr 133-173, Cb 77-127
至于为什么选择YCrCb空间以及阈值的确定, 可以参考这篇论文A New Fast Skin Color Detection Technique .

基于椭圆皮肤模型的YCrCb空间检测

可以参考这篇文章: https://www.cnblogs.com/skyfsm/p/7868877.html

YCrCb + OStu 自动阈值分割

也是主要参考👆那篇文章.
先将RGB图像转换到YCrCb颜色空间,提取Cr分量图像,然后对Cr做自二值化阈值分割处理
参考代码:

    Mat ycrcb_image;
    cvtColor(src, ycrcb_image, COLOR_BGR2YCrCb); //首先转换成到YCrCb空间
    Mat detect;
    vector<Mat> channels;
    split(ycrcb_image, channels);
    Mat output_mask = channels[1];
    // imshow("YCrCb", output_mask);
    threshold(output_mask, output_mask, 0, 255, THRESH_BINARY | THRESH_OTSU);
    src.copyTo(detect, output_mask);

dlib 关键点定位

此外可以考虑使用dlib中的关键点定位模型,得到人脸的keypoints然后使用这些关键点对人脸的形状进行逼近,从而得到人脸区域。这种方法鲁棒性比较好,但是问题有两点:无法定位额头区域,需要自己推测;由关键点逼近人脸区域存在误差,特别是在边缘区域的误差会对效果造成较大的影响。
如:
原图:


image.png

dlib关键点信息:


image.png

由关键点得到的mask,


Screen Shot 2018-11-05 at 4.13.37 PM.png

综合以上几种方法和自己的经验,暂时觉得在YCrCb空间进行颜色分割是比较靠谱的方法,当然得到的初步mask需要进行很多处理,这里就不细说了。看几组结果吧:

第一组:


image.png
image.png

image.png

image.png

第二组:


image.png

image.png

image.png

image.png

第三组:


image.png
HSV_result.jpg
YCrCb_Otsu_result.jpg
YCrCb_result.jpg

由上至下分别为HSV, YCrCb_OStu分割, YCrCb阈值分割

基于神经网络的分割

实际上除了以上这些传统的分割方法,现在很多产品都是基于神经网络进行分割,皮肤分割只是portrait segmentation的一个子问题,只要由足够的训练样本和网络的速度足够快,可以取得非常好的分割效果。
这种方法的主要问题一是需要足够多的训练样本,二是速度限制,毕竟分割完成之后还需要进行进一步处理(各种美颜算法),效果可以很好,但是对技术的要求也很高。

下次贴一张我自己用分割网络做的人脸分割的效果图。

Reference

  1. https://www.cnblogs.com/skyfsm/p/7868877.html
  2. A New Fast Skin Color Detection Technique
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,133评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,682评论 3 390
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,784评论 0 350
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,508评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,603评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,607评论 1 293
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,604评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,359评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,805评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,121评论 2 330
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,280评论 1 344
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,959评论 5 339
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,588评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,206评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,442评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,193评论 2 367
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,144评论 2 352

推荐阅读更多精彩内容