使用opencv对简单物体进行计数,不使用深度学习的方法,如果使用深度学习的方法肯定比这个更加准确。直接就是用opencv的方法,如果对图像处理不熟悉的话估计效果肯定不行,这里也有很多的参数和api方法进行调试,因为是进行计数,标定物体是必然操作。
图片:
这里有一个难点就是这么把单个玉米粒进行分开,因为二值化之后有几个玉米粒的二值图是相连的,参考距离变换,可以得到闭合区域中心点到边缘的变化值,这时玉米粒的联通区域像素会出现山峰一样变换,对山峰进行二值化操作就可以把玉米粒分开了。
方法:
- 二值化操作
- 形态学操作,尽量把玉米粒分开
- 距离变换
- 局部的二值化操作,按照山峰的顶点区域进行二值化操作
- 轮廓查找
- 计数
#include <opencv2/opencv.hpp>
#include <iostream>
#include <math.h>
using namespace cv;
using namespace std;
Mat src, dst, gray_src;
char input_image[] = "input image";
char output_image[] = "output image";
int main(int argc, char ** argv){
src = imread("case4.jpg");
if (src.empty()){
printf("colud not load image ..\n");
return -1;
}
namedWindow(input_image, CV_WINDOW_AUTOSIZE);
namedWindow(output_image, CV_WINDOW_AUTOSIZE);
imshow(input_image, src);
// 二值化操作
cvtColor(src, gray_src, COLOR_BGR2GRAY);
threshold(gray_src, gray_src, 0,255,THRESH_BINARY | THRESH_TRIANGLE);
imshow("binary image", gray_src);
// 形态学操作
Mat kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
dilate(gray_src, gray_src, kernel, Point(-1, -1), 1);
imshow("dilate image", gray_src);
// 距离变换
Mat dist;
bitwise_not(gray_src, gray_src);
distanceTransform(gray_src, dist, CV_DIST_L2, 3);
normalize(dist, dist, 0, 1.0, NORM_MINMAX);
imshow("dist image", dist);
// 阈值二值化
Mat dist_8u;
dist.convertTo(dist_8u, CV_8U);
// threshold(dist_8u, dist_8u, 0.3,1, THRESH_BINARY | THRESH_TRIANGLE);
adaptiveThreshold(dist_8u, dist_8u, 255, ADAPTIVE_THRESH_GAUSSIAN_C, THRESH_BINARY, 139, 0.0);
kernel = getStructuringElement(MORPH_RECT, Size(5, 5), Point(-1, -1));
erode(dist_8u, dist_8u, kernel, Point(-1, -1), 2); // erode dilate
imshow("dist-binary",dist_8u);
vector<vector<Point>> contours;
findContours(dist_8u, contours, CV_RETR_EXTERNAL, CHAIN_APPROX_SIMPLE);
// draw resutl
Mat markers = Mat::zeros(src.size(), CV_8UC3);
RNG rng(12345);
for (size_t t = 0; t < contours.size();t++)
for (size_t t = 0; t < contours.size(); t++) {
drawContours(markers, contours, static_cast<int>(t), Scalar(rng.uniform(0, 255), rng.uniform(0, 255), rng.uniform(0, 255)),
-1, 8, Mat());
}
printf("number of corns : %d", contours.size());
imshow(output_image, markers);
waitKey(0);
return 0;
}