miRNA和mRNA预测

# mirna和mrna互相预测
# BiocManager::install("multiMiR")
library(multiMiR)
# 开始计算,全程联网,mirna,target决定预测方向,空值时作为目标
example3 <- get_multimir(org = "hsa",
                        mirna = "hsa-miR-xxx-5p",          # 你的miRNA  
                        # target = "XXXX",                      #  你的mRNA
                        table = "predicted",
                        predicted.cutoff = 35,
                        predicted.cutoff.type = "p",
                        predicted.site = "all")
# 提取结果
example3_result <- example3@data
example3_result

# 查看各个数据库结果数
example3@data$database %>% table()
# 画图
library(VennDiagram)
library(tidyverse)
db <- unique(example3_result$database)
db
# 代码优化-------------------------------------------
# 1、每个数据库得结果分开,放入一个list
res_single_db <- db %>% lapply(function(x){example3_result %>% filter(database == x)})
names(res_single_db) <- db
res_single_db
# 2、每个数据库的预测目标分开,生成一个list
to_venn <- res_single_db %>% lapply(function(x){
 unique(x$target_symbol)
})
names(to_venn) <- db
to_venn
# 3、提取想要使用的目标向量,此步不能省略
venn_list <-list(
 diana_microt = to_venn$diana_microt,
 elmmo        = to_venn$elmmo,
 # microcosm  = to_venn$microcosm,
 miranda      = to_venn$miranda,
 # mirdb      = to_venn$mirdb,
 # pictar     = to_venn$pictar,
 pita         = to_venn$pita,
 targetscan   = to_venn$targetscan
)

# 4、画图,不能每个库的结果都用,可能没有结果
veenplot1 <- venn.diagram(
 x = veen_list,
 filename = ".\\plots\\venn1.pdf",
 # disable.logging = TRUE,
 ext.text = TRUE,
 ext.line.lwd = 2,
 ext.dist = -0.15,
 ext.length = 0.9,
 ext.pos = -4,
 # inverted = TRUE,
 cex = 1,
 cat.cex = 1,
 # rotation.degree = 45,
 main = "Complex Venn Diagram",
 # sub = "Featuring: rotation and external lines",
 main.cex = 1,
 sub.cex = 0.9
)


# 5、用循环求交集,代码来自知乎,解螺旋
for (i in 1:length(veen_list)){
 if(i==1){
   intergenes <- veen_list[[1]]
 }
 else{
   intergenes <- intersect(intergenes,veen_list[[i]])
 }
}
# 查看结果
intergenes
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
禁止转载,如需转载请通过简信或评论联系作者。
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,254评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,875评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,682评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,896评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,015评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,152评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,208评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,962评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,388评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,700评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,867评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,551评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,186评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,901评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,689评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,757评论 2 351

推荐阅读更多精彩内容