眼底图像识别报告

简介

本次实验的目的是对眼底图像进行分类识别,数据的标签分为【0,1,2,3,4】五类,分别代表糖尿病视网膜病变的5个阶段,0为健康,4为最严重。

我们的任务就是利用深度学习根据训练集训练模型,对测试集的数据进行预测分类,达到尽可能高的准确率。

原始数据集

  • train set
    包括 35126 张眼底图像的数据,分辨率不一,质量不一。
    划分出其中的10%作为validation set。
  • test set
    包括 53576 张眼底图像的数据,但是kaggle并未给出label,kaggle根据对这个测试集结果的评判来给出比赛的得分。

图像预处理

  • resize
    以图像中的圆形眼底图片为边界进行裁剪,取中心部分。
    调整分辨率分别为128x128,256x256,512x512,用于之后的训练。
  • Data augmentation
    通过360度旋转,镜像等扩增数据集。

网络结构

Paste_Image.png
  • 为了减少训练时间,只选用了一个网络net B进行训练

  • 使用10%的train set作为validation set

  • 用128x128像素图片训练1-11 和 20-25层。

  • 用256x256像素图片训练1-15 和 20-25层。初始时,使用上一次训练得到的权重作为1-11层的权重。

  • 用512x512像素图片训练全部层。初始时,使用上一次训练得到的权重作为1-15层的权重。

  • 最后得到三组权重(weights)
    [best kappa weight, best validation score weight, final weight]

特征提取

从 RMSPooling Layer提取特征。为了提升质量,重复进行20次特征提取,但是使用的是随机的data argumentation。然后在20次循环之后提取出 RMSPooling Layer的平均值和标准差,作为下一层blend network的输入。

左右眼混合

对于每个病人,使用下面的特征作为网络的输入
[this_eye_mean, other_eye_mean, this_eye_std, other_eye_std, right_eye_indicator]
训练一个简单的全连接神经网络。

网络结构:

Input        8193
Dense          32
Maxout         16
Dense          32
Maxout         16
```

根据上文训练的三组weights,会生成三个blend network。然后对这三个network的输出取平均值,并且设置阈值为[0.5,1.5,2.5,3.5]来生成最终的分类结果。

## 评分标准

kaggle对此比赛的评分基于 quadratic weighted kappa 算法。得分范围为0-1,分数越高证明模型的效果越好。

简单地说就是对于多分类问题,预测的越不准得分越低,比如把class=0预测成class=4的惩罚会比把class=0预测成class=1的惩罚重很多,进行随机预测的得分约为0。

具体的算法实现内容参见[此链接](https://www.kaggle.com/c/diabetic-retinopathy-detection/details/evaluation)

## 实验结果

提交到kaggle进行评分,结果为8.42,略低于原队伍的8.44,但是考虑到我们所大幅度简化的网络,实际得到的结果还是不错的。

validation set的confusion matrix如下:
![confusion matrix](http://upload-images.jianshu.io/upload_images/2563527-e190e0077b75e00d.png?imageMogr2/auto-orient/strip%7CimageView2/2/w/1240)
可以看到,对于糖尿病视网膜病变的识别率能达到约92%左右,误报率为8%左右。

整个训练耗时约30+小时,使用一块GTX1080显卡。
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,752评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,100评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,244评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,099评论 1 286
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,210评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,307评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,346评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,133评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,546评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,849评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,019评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,702评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,331评论 3 319
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,030评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,260评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,871评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,898评论 2 351

推荐阅读更多精彩内容