Rabin-Karp字符串匹配算法

Rabin-Karp字符串匹配算法是对每一个字符进行比较,把每个字符进行对应进制数并取模运算,然后比较每个字符的函数值。预处理时间是O(m),匹配时间是O((n-m+1)m)。

Rabin-Karp算法的思想:

1 假设目标字符串长度为N,待匹配字符串的长度为M (M<=N)
2 首先计算待匹配字符串的hash值,然后计算目标字符串前M个字符的hash值
3 比较前面计算的2个hash值,比较次数N-M+1
  - 若hash值不相等,则继续计算目标字符串的下一个长度为M的字符子串的hash值
  - 若hash值相同,则需要使用朴素算法再次判断是否为相同的字符串。

这里有一段关于Rabin-Karp算法的分析:
Rabin-Karp算法相对于朴素字符串匹配算法比较快的原因有2点:
① Rabin-Karp算法是将字符串计算成了数值,数值的比较 相比于对字符串的包含的字符进行逐个比较(朴素字符串匹配算法)会更快。
② 朴素字符串匹配每一次都是2个字符串的重新匹配,之前的字符串的匹配结果不能应用到这次匹配中。而Rabin-Karp可以利用上次匹配的结果信息: 字符串生成的数值可以表示出字符的前后顺序,而且可以随时去掉某个字符的值,可以随时添加一个新字符的值。当一次匹配结束后,去掉源串第一个字符的的值,再加上这次比较来自于源串中要新加的字符串的值。

Rabin-Karp算法举例:

比如我们要在源串 "9876543210520" 中查找 "520",因为这些字符串中只有数字,所以我们可以使用字符集 {'0', '1', '2', '3', '4', '5', '6', '7', '8', '9'} 来表示字符串中的所有元素,并且将各个字符映射到数字 0~9,然后用 M 表示字符集中字符的总个数,这里是 10,那么我们就可以将搜索词 "520" 转化为下面的数值:

("5"的映射值 * M + "2"的映射值) * M + "0"的映射值 = (5 * 10 + 2) * 10 + 0 = 520

“搜索词”计算好了,那么接下来计算“源串”,取“源串”的前 n 个字符(n 为“搜索词”的长度)"987",按照同样的方法计算其数值:

("9"的映射值 * M + "8"的映射值) * M + "7"的映射值 = (9 * 10 + 8) * 10 + 7 = 987

然后将该值与搜索词的值进行比较即可。比较发现 520 与 987 不相等,则说明 "520" 与 "987" 不匹配,则继续向下寻找,这时候该如何做呢?下一步应该比较 "520" 跟 "876" 了,那么我们如何利用前一步的信息呢?首先我们把 987 减去代表字符 "9" 的部分:

987 - ("9"的映射值 * (M 的 n - 1 次方)) = 987 - (9 * (10 的 2 次方)) = 987 - 900 = 87

然后再乘以 M(这里是 10),再加上 "6" 的映射值,不就成了 876 了么:

87 * M + "6"的映射值 = 87 * 10 + 6 = 876<br/>

再进行比较。

参考文档:
http://www.cnblogs.com/golove/p/3234673.html
https://github.com/gopher-learning/night-reading-go/blob/master/20180510/README.md
https://blog.csdn.net/chenhanzhun/article/details/39895077
https://github.com/gopher-learning/night-reading-go/blob/master/20180510/README.md

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,047评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,807评论 3 386
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,501评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,839评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,951评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,117评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,188评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,929评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,372评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,679评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,837评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,536评论 4 335
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,168评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,886评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,129评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,665评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,739评论 2 351

推荐阅读更多精彩内容