1、前言
简单的说,mybatis插件就是对ParameterHandler、ResultSetHandler、StatementHandler、Executor这四个接口上的方法进行拦截,利用JDK动态代理机制,为这些接口的实现类创建代理对象,在执行方法时,先去执行代理对象的方法,从而执行自己编写的拦截逻辑,所以真正要用好mybatis插件,主要还是要熟悉这四个接口的方法以及这些方法上的参数的含义;
另外,如果配置了多个拦截器的话,会出现层层代理的情况,即代理对象代理了另外一个代理对象,形成一个代理链条,执行的时候,也是层层执行;
关于mybatis插件涉及到的设计模式和软件思想如下:
设计模式:代理模式、责任链模式;
软件思想:AOP编程思想,降低模块间的耦合度,使业务模块更加独立;
一些注意事项:
不要定义过多的插件,代理嵌套过多,执行方法的时候,比较耗性能;
拦截器实现类的intercept方法里最后不要忘了执行invocation.proceed()方法,否则多个拦截器情况下,执行链条会断掉;
2、Springboot 编写 mybatis 插件
编写 mybatis 插件很简单,首先定义要拦截的是上面说到的哪个类,拦截哪个方法,参数是啥,然后配置一下即可
package com.snowflake1.test.config;
import org.apache.ibatis.executor.statement.StatementHandler;
import org.apache.ibatis.mapping.BoundSql;
import org.apache.ibatis.plugin.*;
import org.slf4j.Logger;
import org.slf4j.LoggerFactory;
import java.sql.Connection;
import java.util.Properties;
@Intercepts({
@Signature(type = StatementHandler.class, method = "prepare", args = {Connection.class, Integer.class})
})
public class MyPlugin implements Interceptor {
private Logger logger = LoggerFactory.getLogger(MyPlugin.class);
private long time;
//方法拦截
@Override
public Object intercept(Invocation invocation) throws Throwable {
//通过StatementHandler获取执行的sql
StatementHandler statementHandler = (StatementHandler) invocation.getTarget();
BoundSql boundSql = statementHandler.getBoundSql();
String sql = boundSql.getSql();
long start = System.currentTimeMillis();
Object proceed = invocation.proceed();
long end = System.currentTimeMillis();
if ((end - start) > time) {
logger.info("本次数据库操作是慢查询,sql是:" + sql);
}
return proceed;
}
//获取到拦截的对象,底层也是通过代理实现的,实际上是拿到一个目标代理对象
@Override
public Object plugin(Object target) {
return Plugin.wrap(target, this);
}
//获取设置的阈值等参数
@Override
public void setProperties(Properties properties) {
this.time = Long.parseLong(properties.getProperty("time"));
}
}
在 springboot 那配置一下(我用的是 mybatisplus)
package com.snowflake1.test.config;
import com.baomidou.mybatisplus.autoconfigure.ConfigurationCustomizer;
import com.baomidou.mybatisplus.core.MybatisConfiguration;
import org.springframework.context.annotation.Bean;
import org.springframework.context.annotation.Configuration;
import java.util.Properties;
@Configuration
public class MapperConfig {
//将插件加入到mybatis插件拦截链中
@Bean
public ConfigurationCustomizer configurationCustomizer() {
return new ConfigurationCustomizer() {
@Override
public void customize(MybatisConfiguration configuration) {
//插件拦截链采用了责任链模式,执行顺序和加入连接链的顺序有关
MyPlugin myPlugin = new MyPlugin();
//设置参数,比如阈值等,可以在配置文件中配置,这里直接写死便于测试
Properties properties = new Properties();
//这里设置慢查询阈值为1毫秒,便于测试
properties.setProperty("time", "1");
myPlugin.setProperties(properties);
configuration.addInterceptor(myPlugin);
}
};
}
}
或者
import com.baomidou.mybatisplus.core.MybatisConfiguration;
import com.baomidou.mybatisplus.extension.plugins.PaginationInterceptor;
import com.xdd.mybatis.CatMybatisPlugin;
import org.apache.ibatis.session.SqlSessionFactory;
import org.springframework.beans.factory.annotation.Autowired;
import org.springframework.context.annotation.Configuration;
import javax.annotation.PostConstruct;
@Configuration
public class MybatisInterceptorConfig {
@Autowired
private SqlSessionFactory sqlSessionFactory;
@Autowired
private SnowflakeIdGenerator snowflakeIdGenerator;
@PostConstruct
public void addInterceptor() {
this.sqlSessionFactory.getConfiguration().addInterceptor(new PaginationInterceptor());
this.sqlSessionFactory.getConfiguration().addInterceptor(new CatMybatisPlugin());
MybatisConfiguration mybatisConfiguration = (MybatisConfiguration) this.sqlSessionFactory.getConfiguration();
mybatisConfiguration.getGlobalConfig().setIdentifierGenerator(snowflakeIdGenerator);
}
}
SnowflakeIdGenerator:
import cn.com.kemai.open.util.SnowflakeIdUtils;
import com.baomidou.mybatisplus.core.incrementer.IKeyGenerator;
import com.baomidou.mybatisplus.core.incrementer.IdentifierGenerator;
import org.springframework.stereotype.Component;
import java.util.ArrayList;
import java.util.Collections;
import java.util.List;
import java.util.Random;
@Component
public class SnowflakeIdGenerator implements IKeyGenerator, IdentifierGenerator {
@Override
public Number nextId(Object entity) {
return SnowflakeIdUtils.generateId();
}
/**
* @param incrementerName
* 增量器名称,@KeySequence中的value之会传入该参数中
* @return
*/
@Override
public String executeSql(String incrementerName) {
return "select " + getId() + " from dual";
}
public static String getId() {
//获取当前时间戳
String str = String.valueOf(System.currentTimeMillis());
List list = new ArrayList();
//将时间戳放入到List中
for (Character s : str.toCharArray()) {
list.add(s.toString());
}
//随机打乱
Collections.shuffle(list);
//拼接字符串,并添加2(自定义)位随机数
return String.join("", list) + randomNumber(2);
}
/**
* 生成指定长度的一个数字字符串
*
* @param num
* @return
*/
public static String randomNumber(int num) {
if (num < 1) {
num = 1;
}
Random random = new Random();
StringBuilder str = new StringBuilder();
for (int i = 0; i < num; i++) {
str.append(random.nextInt(10));
}
return str.toString();
}
}
SnowflakeIdUtils:
import org.apache.commons.lang3.RandomUtils;
import org.apache.commons.lang3.StringUtils;
import org.apache.commons.lang3.SystemUtils;
import java.net.Inet4Address;
import java.net.UnknownHostException;
import java.util.Date;
/**
* Twitter_Snowflake<br>
* SnowFlake的结构如下(每部分用-分开):<br>
* 0 - 0000000000 0000000000 0000000000 0000000000 0 - 00000 - 00000 - 000000000000 <br>
* 1位标识,由于long基本类型在Java中是带符号的,最高位是符号位,正数是0,负数是1,所以id一般是正数,最高位是0<br>
* 41位时间截(毫秒级),注意,41位时间截不是存储当前时间的时间戳,而是存储时间戳的差值(当前时间戳 - 开始时间戳)
* 得到的值),这里的的开始时间戳,一般是我们的id生成器开始使用的时间,由我们程序来指定的(如下下面程序IdWorker类的startTime属性)。41位的时间戳,可以使用69年,年T = (1L << 41) / (1000L * 60 * 60 * 24 * 365) = 69<br>
* 10位的数据机器位,可以部署在1024个节点,包括5位datacenterId和5位workerId<br>
* 12位序列,毫秒内的计数,12位的计数顺序号支持每个节点每毫秒(同一机器,同一时间截)产生4096个ID序号<br>
* 加起来刚好64位,为一个Long型。<br>
* SnowFlake的优点是,整体上按照时间自增排序,并且整个分布式系统内不会产生ID碰撞(由数据中心ID和机器ID作区分),并且效率较高,经测试,SnowFlake每秒能够产生26万ID左右。
*/
public class SnowflakeIdUtils {
/** 开始时间截 (2021-01-01) */
private final long twepoch = 1609430400000L;
/** 机器id所占的位数 */
private final long workerIdBits = 5L;
/** 数据标识id所占的位数 */
private final long dataCenterIdBits = 5L;
/** 支持的最大机器id,结果是31 (这个移位算法可以很快的计算出几位二进制数所能表示的最大十进制数) */
private final long maxWorkerId = -1L ^ (-1L << workerIdBits);
/** 支持的最大数据标识id,结果是31 */
private final long maxDataCenterId = -1L ^ (-1L << dataCenterIdBits);
/** 序列在id中占的位数 */
private final long sequenceBits = 12L;
/** 机器ID向左移12位 */
private final long workerIdShift = sequenceBits;
/** 数据标识id向左移17位(12+5) */
private final long dataCenterIdShift = sequenceBits + workerIdBits;
/** 时间截向左移22位(5+5+12) */
private final long timestampLeftShift = sequenceBits + workerIdBits + dataCenterIdBits;
/** 生成序列的掩码,这里为4095 (0b111111111111=0xfff=4095) */
private final long sequenceMask = -1L ^ (-1L << sequenceBits);
/** 工作机器ID(0~31) */
private long workerId;
/** 数据中心ID(0~31) */
private long dataCenterId;
/** 毫秒内序列(0~4095) */
private long sequence = 0L;
/** 上次生成ID的时间截 */
private long lastTimestamp = -1L;
private static SnowflakeIdUtils idWorker;
static {
idWorker = new SnowflakeIdUtils(getWorkId(), getDataCenterId());
}
/**
* 构造函数
* @param workerId 工作ID (0~31)
* @param dataCenterId 数据中心ID (0~31)
*/
public SnowflakeIdUtils(long workerId, long dataCenterId) {
if (workerId > maxWorkerId || workerId < 0) {
throw new IllegalArgumentException(String.format("workerId can't be greater than %d or less than 0", maxWorkerId));
}
if (dataCenterId > maxDataCenterId || dataCenterId < 0) {
throw new IllegalArgumentException(String.format("dataCenterId can't be greater than %d or less than 0", maxDataCenterId));
}
this.workerId = workerId;
this.dataCenterId = dataCenterId;
}
/**
* 获得下一个ID (该方法是线程安全的)
* @return SnowflakeId
*/
public synchronized long nextId() {
long timestamp = timeGen();
//如果当前时间小于上一次ID生成的时间戳,说明系统时钟回退过这个时候应当抛出异常
if (timestamp < lastTimestamp) {
throw new RuntimeException(String.format("Clock moved backwards. Refusing to generate id for %d milliseconds", lastTimestamp - timestamp));
}
//如果是同一时间生成的,则进行毫秒内序列
if (lastTimestamp == timestamp) {
sequence = (sequence + 1) & sequenceMask;
//毫秒内序列溢出
if (sequence == 0) {
//阻塞到下一个毫秒,获得新的时间戳
timestamp = tilNextMillis(lastTimestamp);
}
}
//时间戳改变,毫秒内序列重置
else {
sequence = 0L;
}
//上次生成ID的时间截
lastTimestamp = timestamp;
//移位并通过或运算拼到一起组成64位的ID
return ((timestamp - twepoch) << timestampLeftShift)
| (dataCenterId << dataCenterIdShift)
| (workerId << workerIdShift)
| sequence;
}
/**
* 阻塞到下一个毫秒,直到获得新的时间戳
* @param lastTimestamp 上次生成ID的时间截
* @return 当前时间戳
*/
protected long tilNextMillis(long lastTimestamp) {
long timestamp = timeGen();
while (timestamp <= lastTimestamp) {
timestamp = timeGen();
}
return timestamp;
}
/**
* 返回以毫秒为单位的当前时间
* @return 当前时间(毫秒)
*/
protected long timeGen() {
return System.currentTimeMillis();
}
private static Long getWorkId(){
try {
String hostAddress = Inet4Address.getLocalHost().getHostAddress();
int[] ints = StringUtils.toCodePoints(hostAddress);
int sums = 0;
for(int b : ints) {
sums += b;
}
return (long)(sums % 32);
} catch (UnknownHostException e) {
// 如果获取失败,则使用随机数备用
return RandomUtils.nextLong(0,31);
}
}
private static Long getDataCenterId(){
int[] ints = StringUtils.toCodePoints(SystemUtils.getHostName());
int sums = 0;
for (int i: ints) {
sums += i;
}
return (long)(sums % 32);
}
/**
* 静态工具类
*
* @return
*/
public static synchronized Long generateId(){
long id = idWorker.nextId();
return id;
}
/** 测试 */
public static void main(String[] args) {
System.out.println(System.currentTimeMillis());
long startTime = System.nanoTime();
for (int i = 0; i < 5; i++) {
long id = SnowflakeIdUtils.generateId();
System.out.println(id);
}
System.out.println((System.nanoTime()-startTime)/1000000+"ms");
Date date = DateUtils.stringToDate("2021-01-01 00:00:00");
System.out.println(date.getTime());
}
}