快速排序的Python实现

目录

  • 快速排序的介绍
  • 快速排序的Python实现

快速排序的介绍

快速排序(quick sort)的采用了分治的策略。

  • 分治策略指的是:
    将原问题分解为若干个规模更小但结构与原问题相似的子问题。递归地解这些子问题,然后将这些子问题的解组合为原问题的解。
  • 快排的基本思想是:
    在序列中找一个划分值,通过一趟排序将未排序的序列排序成 独立的两个部分,其中左边部分序列都比划分值小,右边部分的序列比划分值大,此时划分值的位置已确认,然后再对这两个序列按照同样的方法进行排序,从而达到整个序列都有序的目的。

快速排序的Python实现

先来看一个 我更想称之为伪快排的快排代码:

def quick_sort(array):
    if len(array) < 2:
        return array
    else:
        pivot = array[0]
        less_than_pivot = [x for x in array if x <= pivot]
        more_than_pivot = [x for x in array if x > pivot]
        return quick_sort(less_than_pivot) + [pivot] + quick_sort(more_than_pivot)

这段代码最关键的是pivot这个参数,这段代码里取序列的第一个元素,然后以这个元素为分组的基准,利用列表解析式使得它左边的值都比它小,右边的值都比它大。然后再分别对这些序列进行递归排序。

这段代码虽然短小利于理解,但是其效率很低,主要体现在以下方面:

  • 分组基准的选取过于随便,不一定可以取到列表的中间值
  • 空间复杂度大,使用了两个列表解析式,而且每次选取进行比较时需要遍历整个序列。
  • 若序列长度过于小(比如只有几个元素),快排效率就不如插入排序了。
  • 递归影响性能,最好进行优化。

下面用Python写一个C风格的快排(这里可以体会到快排的精髓):

def quick_sort(L):
    return q_sort(L, 0, len(L) - 1)

def q_sort(L, left, right):
    if left < right:
        pivot = Partition(L, left, right)

        q_sort(L, left, pivot - 1)
        q_sort(L, pivot + 1, right)
    return L

def Partition(L, left, right):
    pivotkey = L[left]

    while left < right:
        while left < right and L[right] >= pivotkey:
            right -= 1
        L[left] = L[right]
        while left < right and L[left] <= pivotkey:
            left += 1
        L[right] = L[left]

    L[left] = pivotkey
    return left

L = [5, 9, 1, 11, 6, 7, 2, 4]

print quick_sort(L)

快速排序需要提供三个参数:待排序序列序列最小下标值left序列最大下标值right。让用户提供这三个参数很麻烦。这里写个函数进行封装:

def quick_sort(L):
    return q_sort(L, 0, len(L) - 1)

下面看一下q_sort函数:

def q_sort(L, left, right):
    if left < right:
        pivot = Partition(L, left, right)

        q_sort(L, left, pivot - 1)
        q_sort(L, pivot + 1, right)
    return L

这个函数的核心是pivot = Partition(L, left, right),在执行它之前,列表的值为[5, 9, 1, 11, 6, 7, 2, 4],而Partition函数做的事情是找到一个分组标准,然后进行分组,让它左边的值比它小,右边的值比它大。
在经过Partition函数分组后,列表变为[4, 2, 1, 5, 6, 7, 11, 9],并把5的下标值(也就是3)返回给pivot,此时列表变成两个小列表[4, 2, 1]和[5, 6, 7, 11, 9] ,之后调用q_sort,就是调用q_sort(L,0, 2)q_sort(L, 4 ,7),对其进行Partition操作,直到整个列表有序为止。

下面看看关键的Partition函数是如何做的:

def Partition(L, left, right):
    pivotkey = L[left]

    while left < right:
        while left < right and L[right] >= pivotkey:
            right -= 1
        L[left] = L[right]
        while left < right and L[left] <= pivotkey:
            left += 1
        L[right] = L[left]

    L[left] = pivotkey
    return left

以一趟排序为例[5, 9, 1, 11, 6, 7, 2, 4]

  • 开始排序时,left=0,right=7,首先用表的第一个下标值作为 分组关键字pivot,


    第一趟排序过程
  • 进行while left < right and L[right] >= pivotkey:判断,其中L[right]=4 不满足条件,跳出循环,执行L[left] = L[right],执行后列表变成:

    第一趟排序结果

  • 然后进行while left < right and L[left] <= pivotkey:,L[left] = 4 <= 5,条件成立,left向右边移动,然后L[left] = 9 不满足条件,执行L[right] = L[left],执行后列表变为:

    第一趟排序过程

  • 然后进行while left < right判断,条件成立,继续进行判断while left < right and L[right] >= pivotkey:,L[right] = 9,满足条件,right向左移动1,继续判断,不满足条件,执行L[left] = L[right],执行后列表变为:

    第一趟排序过程

  • 然后进行while left < right and L[left] <= pivotkey:判断,L[left] = 2,满足条件,left向右移动,然后L[left] = 1,满足条件,left向右移动,L[left] = 11,不满足条件,执行L[right] = L[left],执行后列表变为:

    第一趟排序过程

  • 然后进行while left < right 判断,条件成立,继续进行判断:while left < right and L[right] >= pivotkey:,满足条件,right向左移动,一直移动到这样的状态:

    第一趟排序过程

    此时不满足条件:left < right,跳出循环。然后执行L[left] = pivotkey,并返回left下标值。此时序列变为:
    第一趟排序结果

接下来就是用递归分别对子列表进行排序。读者可以自己试试。

问题的优化

  • 分组基准
    对于上面的代码,分组基准的选取只是取列表的第一个值,太过于随便,当取到序列的中间值时,快排效率是最高的,第一个值未必是列表的中间值。为了解决这个问题,我们可以选取列表中的几个值进行简单的比较,然后取这几个值的中间值 作为分组基准。 这里就不写代码了,读者可以自己实现。

  • 空间使用大。
    上面的代码已经解决了比较次数的问题。

  • 若序列长度过于小(比如只有几个元素),快排效率就不如插入排序了。
    我们可以设置一个列表元素大小的临界值,若小于这个值,就用插入排序,大于这个值用快排。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,001评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,210评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,874评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,001评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,022评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,005评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,929评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,742评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,193评论 1 309
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,427评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,583评论 1 346
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,305评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,911评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,564评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,731评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,581评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,478评论 2 352

推荐阅读更多精彩内容