【Hive】MR 工作流程(数据流转)

    Hive是基于Hadoop的一个数据仓库工具。通过hive,我们可以方便地进行ETL的工作。Hive定义了一个类似于SQL的查询语言:HQL,能够将用户编写的QL转化为相应的Mapreduce程序基于Hadoop执行。本文将介绍Mapreduce的工作流程及HQL优化;

Mapreduce简介

    Hadoop MapReduce 源于Google发表的 MapReduce论文。Hadoop MapReduce 其实就是Google MapReduce的一个克隆版本。Hadoop 2.0即第二代Hadoop系统,其框架最核心的设计是HDFS、MapReduce和YARN。其中,HDFS为海量数据提供存储,MapReduce用于分布式计算,YARN用于进行资源管理。


MapReduce的工作流程

流程图如下:

MapReduce1.0运行模型

Input & Split

输入文件按照一定的标准分片(InputSplit),每个InputSplit的大小是固定的。默认情况下,InputSplit的大小与数据块(Block)的大小是相同的。如果数据块(Block)的大小是默认值64MB,输入文件有两个,一个是32MB,一个是72MB。那么小的文件是一个输入片,大文件会分为两个数据块,一共产生三个InputSplit。每一个InputSplit由一个Mapper进程处理。

优化点

Split 源码参考

思路:合理控制文件数量

    1、Mapper数过大的话,会产生大量的小文件,由于Mapper是基于虚拟机的,过多的Mapper创建和初始化及关闭虚拟机都会消耗大量的硬件资源;

    2、Mapper数太小,并发度过小,Job执行时间过长,无法充分利用分布式硬件资源;

因素:

(1)输入文件数目

(2)输入文件的大小

(3)参数

涉及参数:

    mapreduce.input.fileinputformat.split.minsize //启动map最小的split size大小,默认0

    mapreduce.input.fileinputformat.split.maxsize //启动map最大的split size大小,默认256M

    dfs.block.size//block块大小,(hadoop1.0默认64M,2.0版本默认128M)

    计算公式:splitSize =  Math.max(minSize, Math.min(maxSize, blockSize));

方法:

    lg1:一个文件800M,Block大小是128M,那么Mapper数目就是7个。6个Mapper处理的数据是128M,1个Mapper处理的数据是32M;

    lg2:一个目录下有三个文件大小分别为:5M10M 150M 这个时候其实会产生四个Mapper处理的数据分别是5M,10M,128M,22M。

//同一机架的数据块切片

set mapreduce.input.fileinputformat.split.minsize.per.rack=128000000;

//同一节点的数据块切片

set mapreduce.input.fileinputformat.split.minsize.per.node=128000000;

set mapreduce.input.fileinputformat.split.maxsize=128000000;


Mapping

(2)Map 阶段:承接InputSplit将数据交给用户编写 map()函数处理,并

产生一系列新的 key/value。

Shuffle

Shuffle过程

(3)Collect 收集阶段:在用户编写 map()函数中,当数据处理完成后,一般会调用

OutputCollector.collect()输出结果。在该函数内部,它会将生成的 key/value 分区(调用

Partitioner),并写入一个环形内存缓冲区中。

(4)Spill 阶段:即“溢写”,当环形缓冲区满后,MapReduce 会将数据写到本地磁盘上,

生成一个临时文件。需要注意的是,将数据写入本地磁盘之前,先要对数据进行一次本地排

序,并在必要时对数据进行合并、压缩等操作。

溢写阶段详情:

步骤 1:利用快速排序算法对缓存区内的数据进行排序,排序方式是,先按照分区编号

partition 进行排序,然后按照 key 进行排序。这样,经过排序后,数据以分区为单位聚集在

一起,且同一分区内所有数据按照 key 有序。

步骤 2:按照分区编号由小到大依次将每个分区中的数据写入任务工作目录下的临时文

件 output/spillN.out(N 表示当前溢写次数)中。如果用户设置了 Combiner,则写入文件之

前,对每个分区中的数据进行一次聚集操作。

步骤 3:将分区数据的元信息写到内存索引数据结构 SpillRecord 中,其中每个分区的元

信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大

小超过 1MB,则将内存索引写到文件 output/spillN.out.index 中。

(5)Combine 阶段:当所有数据处理完成后,MapTask 对所有临时文件进行一次合并,

以确保最终只会生成一个数据文件。

当所有数据处理完后,MapTask 会将所有临时文件合并成一个大文件,并保存到文件

output/file.out 中,同时生成相应的索引文件 output/file.out.index。

在进行文件合并过程中,MapTask 以分区为单位进行合并。对于某个分区,它将采用多

轮递归合并的方式。每轮合并 io.sort.factor(默认 100)个文件,并将产生的文件重新加入

待合并列表中,对文件排序后,重复以上过程,直到最终得到一个大文件。

让每个 MapTask 最终只生成一个数据文件,可避免同时打开大量文件和同时读取大量

小文件产生的随机读取带来的开销。

信息包括在临时文件中的偏移量、压缩前数据大小和压缩后数据大小。如果当前内存索引大

小超过 1MB,则将内存索引写到文件 output/spillN.out.index 中。

优化点

    Shuffle 中的缓冲区大小会影响到 mapreduce 程序的执行效率,原则上说,缓冲区越大,磁盘 io 的次数越少,执行速度就越快。缓冲区的大小可以通过参数调整,参数:io.sort.mb 默认 100M。

Reduce

Copy

    1、由于job的每一个map都会根据reduce(n)数将数据分成map 输出结果分成n个partition,所以map的中间结果中是有可能包含每一个reduce需要处理的部分数据的。所以,为了优化reduce的执行时间,hadoop中是等job的第一个map结束后,所有的reduce就开始尝试从完成的map中下载该reduce对应的partition部分数据,因此map和reduce是交叉进行的,其实就是shuffle。Reduce任务通过HTTP向各个Map任务拖取(下载)它所需要的数据(网络传输),Reducer是如何知道要去哪些机器取数据呢?一旦map任务完成之后,就会通过常规心跳通知应用程序的Application Master。reduce的一个线程会周期性地向master询问,直到提取完所有数据(如何知道提取完?)数据被reduce提走之后,map机器不会立刻删除数据,这是为了预防reduce任务失败需要重做。因此map输出数据是在整个作业完成之后才被删除掉的。

    2、reduce进程启动数据copy线程(Fetcher),通过HTTP方式请求maptask所在的TaskTracker获取maptask的输出文件。由于map通常有许多个,所以对一个reduce来说,下载也可以是并行的从多个map下载,那到底同时到多少个Mapper下载数据??这个并行度是可以通过mapreduce.reduce.shuffle.parallelcopies(default5)调整。默认情况下,每个Reducer只会有5个map端并行的下载线程在从map下数据,如果一个时间段内job完成的map有100个或者更多,那么reduce也最多只能同时下载5个map的数据,所以这个参数比较适合map很多并且完成的比较快的job的情况下调大,有利于reduce更快的获取属于自己部分的数据。 在Reducer内存和网络都比较好的情况下,可以调大该参数;

    3、reduce的每一个下载线程在下载某个map数据的时候,有可能因为那个map中间结果所在机器发生错误,或者中间结果的文件丢失,或者网络瞬断等等情况,这样reduce的下载就有可能失败,所以reduce的下载线程并不会无休止的等待下去,当一定时间后下载仍然失败,那么下载线程就会放弃这次下载,并在随后尝试从另外的地方下载(因为这段时间map可能重跑)。reduce下载线程的这个最大的下载时间段是可以通过mapreduce.reduce.shuffle.read.timeout(default180000秒)调整的。如果集群环境的网络本身是瓶颈,那么用户可以通过调大这个参数来避免reduce下载线程被误判为失败的情况。一般情况下都会调大这个参数,这是企业级最佳实战。

MergeSort

     1、这里的merge和map端的merge动作类似,只是数组中存放的是不同map端copy来的数值。Copy过来的数据会先放入内存缓冲区中,然后当使用内存达到一定量的时候才spill磁盘。这里的缓冲区大小要比map端的更为灵活,它基于JVM的heap size设置。这个内存大小的控制就不像map一样可以通过io.sort.mb来设定了,而是通过另外一个参数 mapreduce.reduce.shuffle.input.buffer.percent(default 0.7f 源码里面写死了) 来设置,这个参数其实是一个百分比,意思是说,shuffile在reduce内存中的数据最多使用内存量为:0.7 × maxHeap of reduce task。JVM的heapsize的70%。内存到磁盘merge的启动门限可以通过mapreduce.reduce.shuffle.merge.percent(default0.66)配置。也就是说,如果该reduce task的最大heap使用量(通常通过mapreduce.admin.reduce.child.java.opts来设置,比如设置为-Xmx1024m)的一定比例用来缓存数据。默认情况下,reduce会使用其heapsize的70%来在内存中缓存数据。假设 mapreduce.reduce.shuffle.input.buffer.percent 为0.7,reducetask的max heapsize为1G,那么用来做下载数据缓存的内存就为大概700MB左右。这700M的内存,跟map端一样,也不是要等到全部写满才会往磁盘刷的,而是当这700M中被使用到了一定的限度(通常是一个百分比),就会开始往磁盘刷(刷磁盘前会先做sortMerge)。这个限度阈值也是可以通过参数 mapreduce.reduce.shuffle.merge.percent(default0.66)来设定。与map 端类似,这也是溢写的过程,这个过程中如果你设置有Combiner,也是会启用的,然后在磁盘中生成了众多的溢写文件。这种merge方式一直在运行,直到没有map端的数据时才结束,然后启动磁盘到磁盘的merge方式生成最终的那个文件。

    这里需要强调的是,merge有三种形式:1)内存到内存(memToMemMerger)2)内存中Merge(inMemoryMerger)3)磁盘上的Merge(onDiskMerger)具体包括两个:(一)Copy过程中磁盘合并(二)磁盘到磁盘。

    (1)内存到内存Merge(memToMemMerger)    Hadoop定义了一种MemToMem合并,这种合并将内存中的map输出合并,然后再写入内存。这种合并默认关闭,可以通过mapreduce.reduce.merge.memtomem.enabled(default:false)

打开,当map输出文件达到mapreduce.reduce.merge.memtomem.threshold时,触发这种合并。

    (2)内存中Merge(inMemoryMerger):当缓冲中数据达到配置的阈值时,这些数据在内存中被合并、写入机器磁盘。阈值有2种配置方式:

        配置内存比例:前面提到reduceJVM堆内存的一部分用于存放来自map任务的输入,在这基础之上配置一个开始合并数据的比例。假设用于存放map输出的内存为500M,mapreduce.reduce.shuffle.merge.percent配置为0.66,则当内存中的数据达到330M的时候,会触发合并写入。

   配置map输出数量: 通过mapreduce.reduce.merge.inmem.threshold配置。在合并的过程中,会对被合并的文件做全局的排序。如果作业配置了Combiner,则会运行combine函数,减少写入磁盘的数据量。

    (3)磁盘上的Merge(onDiskMerger):

            (3.1)Copy过程中磁盘Merge:在copy过来的数据不断写入磁盘的过程中,一个后台线程会把这些文件合并为更大的、有序的文件。如果map的输出结果进行了压缩,则在合并过程中,需要在内存中解压后才能给进行合并。这里的合并只是为了减少最终合并的工作量,也就是在map输出还在拷贝时,就开始进行一部分合并工作。合并的过程一样会进行全局排序。

            (3.2)最终磁盘中Merge:当所有map输出都拷贝完毕之后,所有数据被最后合并成一个整体有序的文件,作为reduce任务的输入。这个合并过程是一轮一轮进行的,最后一轮的合并结果直接推送给reduce作为输入,节省了磁盘操作的一个来回。最后(所以map输出都拷贝到reduce之后)进行合并的map输出可能来自合并后写入磁盘的文件,也可能来及内存缓冲,在最后写入内存的map输出可能没有达到阈值触发合并,所以还留在内存中。

   每一轮合并不一定合并平均数量的文件数,指导原则是使用整个合并过程中写入磁盘的数据量最小,为了达到这个目的,则需要最终的一轮合并中合并尽可能多的数据,因为最后一轮的数据直接作为reduce的输入,无需写入磁盘再读出。因此我们让最终的一轮合并的文件数达到最大,即合并因子的值,通过mapreduce.task.io.sort.factor(default:10)来配置。

如上图:Reduce阶段中一个Reduce过程 可能的合并方式为:假设现在有20个map输出文件,合并因子配置为5,则需要4轮的合并。最终的一轮确保合并5个文件,其中包括2个来自前2轮的合并结果,因此原始的20个中,再留出3个给最终一轮。

Reduce函数调用(用户自定义业务逻辑)

    1、当reduce将所有的map上对应自己partition的数据下载完成后,就会开始真正的reduce计算阶段。reducetask真正进入reduce函数的计算阶段,由于reduce计算时肯定也是需要消耗内存的,而在读取reduce需要的数据时,同样是需要内存作为buffer,这个参数是控制,reducer需要多少的内存百分比来作为reduce读已经sort好的数据的buffer大小??默认用多大内存呢??默认情况下为0,也就是说,默认情况下,reduce是全部从磁盘开始读处理数据。可以用mapreduce.reduce.input.buffer.percent(default 0.0)(源代码MergeManagerImpl.java:674行)来设置reduce的缓存。如果这个参数大于0,那么就会有一定量的数据被缓存在内存并输送给reduce,当reduce计算逻辑消耗内存很小时,可以分一部分内存用来缓存数据,可以提升计算的速度。所以默认情况下都是从磁盘读取数据,如果内存足够大的话,务必设置该参数让reduce直接从缓存读数据,这样做就有点Spark Cache的感觉;

    2、Reduce在这个阶段,框架为已分组的输入数据中的每个 <key, (list of values)>对调用一次 reduce(WritableComparable,Iterator, OutputCollector, Reporter)方法。Reduce任务的输出通常是通过调用 OutputCollector.collect(WritableComparable,Writable)写入文件系统的。Reducer的输出是没有排序的。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,236评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,867评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,715评论 0 340
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,899评论 1 278
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,895评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,733评论 1 283
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,085评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,722评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 43,025评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,696评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,816评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,447评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,057评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,009评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,254评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,204评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,561评论 2 343