带你总结高并发下缓存会出现的问题和缓存更新的策略

在项目开发中,我们几乎都会使用到缓存,使用缓存最直观的就是提升系统的响应能力,大大提升了用户体验,并且能够减轻服务器的压力,提高整个系统的性能。但是在高并发的场景下,我们需要在使用缓存时应注意该场景下缓存所带来的问题。

一、为什么要使用缓存

上述图是应用请求或浏览器网络请求的大致流程

用户增多后,服务器和数据库压力增大。为保持高吞吐量,需要加入缓存来减少服务端的计算量。

以上任意环节都可以加入缓存,浏览器和APP可以维护客户端的缓存,对于后端来说,我们比较关心服务端的缓存和数据库的缓存。

高性能、高并发

二、缓存的特征

缓存的命中率:当某个请求能够通过访问缓存而得到响应时,称为缓存命中。缓存命中率越高,缓存的利用率也就越高。在这里命中数就可以理解为用户请求的资源在缓存中,而没有命中就是指用户无法直接从缓存中获取资源,需要查询数据库或者由服务器计算分发资源。

缓存的最大元素:缓存中能存放的最大数据,可以理解为缓存的容量。当缓存中的数据超出了最大元素,那么就会触发缓存清空策略。合理设置最大元素值可以有效的帮我们提高命中率。

淘汰策略:

FIFO:先进先出策略,在实时性的场景下,需要经常访问最新的数据,那么就可以使用FIFO,使得最先进入的数据被淘汰。

LRU:(The Least Recently Used)最近最久使用策略,如果一个数据在最近一段时间没有被访问到,那么可以认为在将来它被访问的可能性也很小。因此,当空间满时,最久没有访问的数据最先被置换(淘汰)。在热点场景下适用,优先保证热点数据的有效性。

LFU:(Least Frequently Used)最近最少使用策略,如果一个数据在最近一段时间很少被访问到,那么可以认为在将来它被访问的可能性也很小。因此,当空间满时,最小频率访问的数据最先被淘汰。这类策略有效的保证高命中率。

三、缓存命中率影响因素

缓存适合读多写少的业务场景,如果是在写多读少的场景使用缓存的意义就不大,并且可以根据清空策略来保证缓存的命中率。实时性要求越低的场景就越适合缓存。

缓存的粒度越小,命中率就越高。对象缓存是目前缓存粒度最小的,因此被命中的几率更高。

缓存容量和基础设施,目前的缓存工具和中间件大多采用LRU算法,并且采用分布式架构能更好的扩展缓存。

缓存应该聚焦于高频访问且时效性低的热点数据上。

四、高并发下缓存出现的问题

4.1、缓存穿透

缓存穿透是指缓存服务器中没有缓存数据,数据库中也没有符合条件的数据,导致业务系统每次都绕过缓存服务器查询下游的数据库,缓存服务器完全失去了其应用的作用。

解决方案:

处理缓存空值:之所以会发生穿透,就是因为缓存没有对那些不存在的值得Key缓存下来,从而导致每次查询都要请求到数据库。可以为这些key对应的值设置为null并放到缓存中,这样再出现查询这个key 的请求的时候,直接返回null即可 。注意,要设置缓存空值的过期时间。

BloomFilter(布隆过滤器):布隆过滤器是一种比较巧妙的概率性数据结构,它可以告诉你数据一定不存在或可能存在,相比Map、Set、List等传统数据结构它占用内存少、结构更高效。对于缓存穿透,我们可以将查询的数据条件都哈希到一个足够大的布隆过滤器中,用户发送的请求会先被布隆过滤器拦截,一定不存在的数据就直接拦截返回了,从而避免下一步对数据库的压力。

4.2、缓存击穿

缓存击穿是指当某一key的缓存过期时大并发量的请求同时访问此key,瞬间击穿缓存服务器直接访问数据库,让数据库处于负载的情况。

解决方案:

互斥锁:在缓存处理上,通常使用一个互斥锁来解决缓存击穿的问题。简单来说就是当Redis中根据key获得的value值为空时,先锁上,然后从数据库加载,加载完毕,释放锁。若其他线程也在请求该key时,发现获取锁失败,则先阻塞。

热点数据永不过期:设置热点数据永远不过期。

异步定时更新:在缓存处理上,比如某一个热点数据的过期时间是1小时,那么每59分钟,通过定时任务去更新这个热点key,并重新设置其过期时间。

4.3、缓存雪崩

缓存雪崩是指当大量缓存同时过期或缓存服务宕机,所有请求的都直接访问数据库,造成数据库高负载,影响性能,甚至数据库宕机。

解决方案:

不同的过期时间:为了避免大量的缓存在同一时间过期,可以把不同的key过期时间设置成不同的, 并且通过定时刷新的方式更新过期时间。

集群:在缓存雪崩问题防治上面,一个比较典型的技术就是采用集群方式部署,使用集群可以避免服务单点故障。

热点数据永不过期:设置热点数据永远不过期

4.4、缓存数据一致性

4.4.1、 缓存更新常用策略

cache aside

Read/Write through

Write behind

4.4.2、 Cache aside(旁路缓存)

(1)读请求 常见流程

应用首先会判断缓存是否有该数据,缓存命中直接返回数据,缓存未命中即缓存穿透到数据库,从数据库查询数据然后回写到缓存中,最后返回数据给客户端。

(2)写请求

首先更新数据库,然后从缓存中删除该数据。

4.4.3、 Cache aside踩坑

踩坑一:先更新数据库,再更新缓存

如果同时有两个写请求需要更新数据,每个写请求都先更新数据库再更新缓存,在并发场景可能会出现数据不一致的情况。

如上图的执行过程:

(1)写请求1更新数据库,将 age 字段更新为18;

(2)写请求2新数据库,将 age 字段更新为20;

(3)写请求2更新缓存,缓存 age 设置为20;

(4)写请求1更新缓存,缓存 age 设置为18;

执行完预期结果是数据库 age 为20,缓存 age 为20,结果缓存 age为18,这就造成了缓存数据不是最新的,出现了脏数据。

踩坑二:先删缓存,再更新数据库

如果写请求的处理流程是先删除缓存再更新数据库,在一个读请求和一个写请求并发场景下可能会出现数据不一致情况。

如上图的执行过程:

(1)写请求删除缓存数据;

(2)读请求查询缓存未击中(Hit Miss),紧接着查询数据库,将返回的数据回写到缓存中;

(3)写请求更新数据库。

整个流程下来发现数据库中age为20,缓存中age为18,缓存和数据库数据不一致,缓存出现了脏数据。

踩坑三:先更新数据库,再删除缓存

在实际的系统中针对写请求还是推荐先更新数据库再删除缓存,但是在理论上还是存在问题,以下面这个例子说明。

如上图的执行过程:

(1)读请求先查询缓存,缓存未击中,查询数据库返回数据;

(2)写请求更新数据库,删除缓存;

(3)读请求回写缓存;

整个流程操作下来发现数据库age20,缓存age为18,即数据库与缓存不一致,导致应用程序从缓存中读到的数据都为旧数据。

但我们仔细想一下,上述问题发生的概率其实非常低,因为通常数据库更新操作比内存操作耗时多出几个数量级,上图中最后一步回写缓存(set age 18)速度非常快,通常会在更新数据库之前完成。

如果这种极端场景出现了怎么办?我们得想一个兜底的办法:缓存数据设置过期时间。通常在系统中是可以允许少量的数据短时间不一致的场景出现。

4.4.4、Read through

在 Cache Aside 更新模式中,应用代码需要维护两个数据源头:一个是缓存,一个是数据库。而在 Read-Through 策略下,应用程序无需管理缓存和数据库,只需要将数据库的同步委托给缓存提供程序 Cache Provider 即可。所有数据交互都是通过抽象缓存层完成的。

Read-Through流程

如上图,应用程序只需要与Cache Provider交互,不用关心是从缓存取还是数据库。

在进行大量读取时,Read-Through 可以减少数据源上的负载,也对缓存服务的故障具备一定的弹性。如果缓存服务挂了,则缓存提供程序仍然可以通过直接转到数据源来进行操作。

Read-Through 适用于多次请求相同数据的场景,这与 Cache-Aside 策略非常相似,但是二者还是存在一些差别,这里再次强调一下:

在 Cache-Aside 中,应用程序负责从数据源中获取数据并更新到缓存。

在 Read-Through 中,此逻辑通常是由独立的缓存提供程序(Cache Provider)支持。

4.4.5、Write through

Write-Through 策略下,当发生数据更新(Write)时,缓存提供程序 Cache Provider 负责更新底层数据源和缓存。

缓存与数据源保持一致,并且写入时始终通过抽象缓存层到达数据源。

Cache Provider类似一个代理的作用。

4.4.6、 Write behind

Write behind在一些地方也被成为Write back, 简单理解就是:应用程序更新数据时只更新缓存, Cache Provider每隔一段时间将数据刷新到数据库中。说白了就是延迟写入。

如上图,应用程序更新两个数据,Cache Provider 会立即写入缓存中,但是隔一段时间才会批量写入数据库中。

这种方式有优点也有缺点:

优点是数据写入速度非常快,适用于频繁写的场景。

缺点是缓存和数据库不是强一致性,对一致性要求高的系统慎用。

4.4.7、 总结

缓存更新的策略主要分为三种:

Cache aside

Read/Write through

Write behind

Cache aside 通常会先更新数据库,然后再删除缓存,为了兜底通常还会将数据设置缓存时间。

Read/Write through 一般是由一个 Cache Provider 对外提供读写操作,应用程序不用感知操作的是缓存还是数据库。

Write behind简单理解就是延迟写入,Cache Provider 每隔一段时间会批量输入数据库,优点是应用程序写入速度非常快。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,163评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,301评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,089评论 0 352
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,093评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,110评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,079评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,005评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,840评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,278评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,497评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,667评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,394评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,980评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,628评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,649评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,548评论 2 352

推荐阅读更多精彩内容