如何进行负二项回归分析?

如果研究X对于Y的影响,Y是计数资料,一般可以使用Poisson回归进行研究。但是Poisson回归要求数据满足等离散现象(平均值与方差相等),如果说数据具有一定的聚焦性,此时很可能就会产生过离散现象,即数据平均值与方差明显不相等。此时使用负二项回归更为科学。


比如研究传染病人数,传染病人数明显具有一些空间聚焦现象;以及专利数量,很可能企业之间存在着某种空间意义上的竞争,导致数据具有聚焦现象,诸如此类数据其并不满足Poisson分布的独立性原则。此类数据通常情况下方差会明显的大于平均值,属于过离散数据,此种数据在进行Poisson回归时会导致模型参数估计值的标准误偏小

因而,如果计数资料不适合Poisson分布时,尤其是数据过离散时,此时使用负二项回归分析更合适。


1、案例背景

当前有一项针对专利数量的影响关系研究,研究政府对于企业的支持力度,是否一线城市,对于企业专利数量的影响情况。共收集10个城市的数据,如下:


X1是否一线城市:数字1表示为一线城市,数字0表示非一线城市
X2政府扶持力度:数字越大表示对于企业申请专利时的扶持力度越大
Y专利数量:数字表示某城市调研所有企业申请成功的专利数量
Weight企业数量:数字表示某城市调研的企业数量

2、理论

关于过离散的检验有很多检验方法,在SPSSAU系统中可有三种方式进行综合判断,分别如下:

  • 如果说描述分析时发现平均值与方差值有着较大的差异,则说明负二项回归较合理,如果说平均值与方差值基本相等,说明可能使用Poisson回归较为合适。

  • 过离散现象可通过O检验(在Poisson回归分析时SPSSAU默认有提供)

  • 过离散现象的检验可针对alpha值进行检验,在负二项回归时默认输出,如果alpha值显著不为0(对应的P值小于0.05),则说明使用负二项回归较为合理,反之则说明可能使用Poisson回归较优。


3、操作

登录SPSSAU,选择【实验/医学研究】--【负二项回归】。


本例子中专利数量是基于‘Weight企业数量’,因此‘基数Eposure【可选】’框中应该放入‘Weight企业数量’这项,如下图:


4、SPSSAU结果分析

(1)过度离散检验



在进行负二项回归之前,专利数量的平均值是56.500,方差是2480.944,明显平均值与方差不相等,存在过离散现象。而且使用SPSSAU的Poisson回归时,对其提供的O检验发现,O值明显大于1.96(p=0.000 <0.05),拒绝等离散假定,说明数据存在明显的过离散现象,因此使用负二项回归较为适合。


(2)负二项回归模型似然比检验

SPSSAU共输出两个表格,分别是“负二项回归模型似然比检验”,“负二项回归分析结果汇总”。 “负二项回归模型似然比检验”是针对整个模型的检验,如果说模型p值小于0.05,意味着放入自变量更优,即模型有意义。“负二项回归分析结果汇总”是回归结果的具体结果。



模型似然比检验用于对整体模型有效性进行分析。

第一:首先对p值进行分析,如果该值小于0.05,则说明模型有效;反之则说明模型无效;

第二:AIC值和BIC值可用于多次分析模型时的对比;此两个值越低越好;如果多次进行分析,对比该两个值的变化情况,综合说明模型构建的优化过程;


首先对模型整体有效性进行分析,模型检验的原定假设为:是否放入自变量(X1是否一线城市, X2政府扶持力度)两种情况时模型质量均一样;检验p值为0.000小于0.05,因而说明拒绝原定假设,即说明本次构建模型时,放入的自变量具有有效性,本次模型构建有意义。


(3)负二项回归分析结果汇总表

从上表可知,将X1是否一线城市, X2政府扶持力度共2项为自变量,而将Y专利数量作为因变量进行负二项回归分析,从上表可以看出,模型公式为:Log(Y)=-10.316 + 0.213*X1是否一线城市 + 0.680*X2政府扶持力度 + ln(Weight企业数量)。模型的伪R方值(McFadden R 方)为0.196,说明研究模型可以解决专利数量19.6%的原因。

具体分析可知:

X1是否一线城市的回归系数值为0.213,但是并没有呈现出显著性(z=0.462,p=0.644>0.05),意味着X1是否一线城市并不会对Y专利数量产生影响关系,即城市类别与专利数量无明显关系。

X2政府扶持力度的回归系数值为0.680,并且呈现出0.01水平的显著性(z=6.490,p=0.000 <0.01),意味着X2政府扶持力度会对Y专利数量产生显著的正向影响关系,以及优势比(OR值, exp(b)值)为1.973,意味着X2政府扶持力度增加一个单位时,Y专利数量的增加幅度为1.973倍。

「更多内容搜索SPSSAU了解」


©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,128评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,316评论 3 388
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 159,737评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,283评论 1 287
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,384评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,458评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,467评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,251评论 0 269
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,688评论 1 306
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,980评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,155评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,818评论 4 337
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,492评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,142评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,382评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,020评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,044评论 2 352