- 在测试集上对训练好的模型进行实验的时候,发现写好的代码没有报错但是会卡在sess.run()那里不动。查了好久终于明白是开启线程的问题。tf的数据线程没有启动,导致数据流没办法计算,整个程序就卡在那里。
- 两个解决方法
使用tf.train.range_input_producer(epoch_size, shuffle=False),会默认将QueueRunner添加到全局图中,我们必须使用tf.train.start_queue_runners(sess=sess),去启动该线程。然后使用coord = tf.train.Coordinator()去做一些线程的同步工作。
第二种方法比较简单,使用sv = tf.train.Supervisor(),文档上说,The Supervisor is a small wrapper around a Coordinator, a Saver, and a SessionManager
使用了Supervisor(),那么保存模型,线程同步的事情都不用我们去干涉了。
tf.Session()与tf.tf.train.Supervisor()的一个区别
©著作权归作者所有,转载或内容合作请联系作者
- 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
- 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
- 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
推荐阅读更多精彩内容
- import os import numpy as np import tensorflow as tf impo...
- 一、TensorFlow 相关常用的数据处理 1、test_first 注: 此学习文档采用 Jupyter 文稿...
- 姓名:王咫毅 学号:19021211150 【嵌牛导读】深度学习应用到实际问题中,一个非常大的问题在于训练深度学习...