Java中常用的七种队列

一、前言:

必看:https://mp.weixin.qq.com/s?__biz=MzU0OTE4MzYzMw==&mid=2247492750&idx=5&sn=63e28f968e1af536da39c69f48477833&chksm=fbb16d70ccc6e46672f565ef787bd67bf50df66a8a080e646aa02792e76944af60fb71a7467d&scene=27

1、什么是队列?

队列(Queue):是集合(Collection)的一个子类。队列允许在一端进行插入操作,而在另一端进行删除操作的线性表,而队列的特点是先进先出。队列的用处很大,比如实现消息队列。

注意:栈的特点是后进先出。

Queue 类关系图.png

从上图可以看出 Queue 大体可分为以下三类。

  • 双端队列:双端队列(Deque)是 Queue 的子类也是 Queue 的补充类,头部和尾部都支持元素插入和获取。
  • 阻塞队列:阻塞队列指的是在元素操作时(添加或删除),如果没有成功,会阻塞等待执行。例如,当添加元素时,如果队列元素已满,队列会阻塞等待直到有空位时再插入。
  • 非阻塞队列:非阻塞队列和阻塞队列相反,会直接返回操作的结果,而非阻塞等待。双端队列也属于非阻塞队列。

2、队列的分类

队列的分类.png
队列名称 底层数据结构 是否有界 备注
ArrayBlockingQueue 数组 有界的 一个基于数组结构的有界阻塞队列,按照先进先出的原则对元素进行排序(初始化时指定队列的大小)。
LinkedBlockingQueue 链表 有界的 一个基于链表结构的有界阻塞队列,按照先进先出的原则对元素进行排序(默认队列大小Integer.MAX_VALUE)。
PriorityBlockingQueue 数组 无界的 一个支持优先级排序的无界阻塞队列(可以自定义比较器)。
DelayQueue 数组 无界的 一个支持延时获取元素的无界阻塞队列。
SynchronousQueue 链表 不存储元素 一个不存储元素的阻塞队列,每个插入操作必须等待另一个线程的移除操作,否则插入操作一直处于阻塞状态(同步的,一个offer必须与一个take与之相对应,否则放不了元素)。
LinkedTransferQueue 链表 无界的 一个基于链表结构的无界阻塞队列,支持生产者消费者模式。
ConcurrentLinkedQueue 链表 无界的 一个基于链表结构的无界并发队列,按照先进先出的原则对元素进行排序(双端数组队列)。

3、什么时候使用队列?

队列是一种先进先出(FIFO)的数据结构,通常适用于以下场景:

  • 1、处理大量的任务或请求:如果系统需要处理大量的任务或请求,并且需要保证这些任务或请求按照先来后到的顺序依次处理,那么队列数据结构就可以发挥作用。比如,处理大量的网络请求任务或消息处理。
  • 2、线程同步和通信:在多线程环境中,队列可以用来进行线程同步和通信。比如,线程池中的任务队列,生产者-消费者模型中的消息队列等,可以把多个线程间的通信和同步问题简单解决。
  • 3、消息中间件:队列还常用于基于消息队列的消息传递机制中,比如 ActiveMQ、RabbitMQ 等消息中间件,这些中间件的底层都实现了消息队列的逻辑,允许生产者将消息放入队列中,消费者从队列中拿到对应的消息来处理。
  • 4、缓存:队列还可以充当缓存的角色,当缓存满时,再来新的数据就可以利用队列的原理,把最早的数据移出队列,从而达到缓存数据的目的。总之,队列可以在许多领域和场景中找到应用,特别是在处理和传递数据时,可以通过队列的先进先出特性,简单有效地实现多个任务、数据的异步处理和通信。

二、队列的使用:

1、Queue 方法说明

Queue 常用方法,如下图所示:


8c899bf7e9cf44721cbb8e1bd808eb3.png

方法说明:

  • add(E):添加元素到队列尾部,成功返回 true,队列超出时抛出异常;
  • offer(E):添加元素到队列尾部,成功返回 true,队列超出时返回 false;
  • remove():删除元素,成功返回 true,失败返回 false;
  • poll():获取并移除此队列的第一个元素,若队列为空,则返回 null;
  • peek():获取但不移除此队列的第一个元素,若队列为空,则返回 null;
  • element():获取但不移除此队列的第一个元素,若队列为空,则抛异常。

2、Queue 使用实例

Queue<String> linkedList = new LinkedList<>();
linkedList.add("Dog");
linkedList.add("Camel");
linkedList.add("Cat");
while (!linkedList.isEmpty()) {
    System.out.println(linkedList.poll());
}

程序执行结果

Dog
Camel
Cat

3、阻塞队列

1、BlockingQueue

BlockingQueue 在 java.util.concurrent 包下,其他阻塞类都实现自 BlockingQueue 接口,BlockingQueue 提供了线程安全的队列访问方式,当向队列中插入数据时,如果队列已满,线程则会阻塞等待队列中元素被取出后再插入;当从队列中取数据时,如果队列为空,则线程会阻塞等待队列中有新元素再获取。

插入方法:

  • add(E):添加元素到队列尾部,成功返回 true,队列超出时抛出异常;
  • offer(E):添加元素到队列尾部,成功返回 true,队列超出时返回 false ;
  • put(E):将元素插入到队列的尾部,如果该队列已满,则一直阻塞。

删除方法:

  • remove(Object):移除指定元素,成功返回 true,失败返回 false;
  • poll(): 获取并移除队列的第一个元素,如果队列为空,则返回 null;
  • take():获取并移除队列第一个元素,如果没有元素则一直阻塞。 检查方法:
  • peek():获取但不移除队列的第一个元素,若队列为空,则返回 null。

2、LinkedBlockingQueue

LinkedBlockingQueue 是一个由链表实现的有界阻塞队列,容量默认值为 Integer.MAX_VALUE,也可以自定义容量,建议指定容量大小,默认大小在添加速度大于删除速度情况下有造成内存溢出的风险,LinkedBlockingQueue 是先进先出的方式存储元素。

3、ArrayBlockingQueue

ArrayBlockingQueue 是一个有边界的阻塞队列,它的内部实现是一个数组。它的容量是有限的,我们必须在其初始化的时候指定它的容量大小,容量大小一旦指定就不可改变。

ArrayBlockingQueue 也是先进先出的方式存储数据,ArrayBlockingQueue 内部的阻塞队列是通过重入锁 ReenterLock 和 Condition 条件队列实现的,因此 ArrayBlockingQueue 中的元素存在公平访问与非公平访问的区别,对于公平访问队列,被阻塞的线程可以按照阻塞的先后顺序访问队列,即先阻塞的线程先访问队列。而非公平队列,当队列可用时,阻塞的线程将进入争夺访问资源的竞争中,也就是说谁先抢到谁就执行,没有固定的先后顺序。

示例代码如下:

// 默认非公平阻塞队列
ArrayBlockingQueue queue = new ArrayBlockingQueue(6);
// 公平阻塞队列
ArrayBlockingQueue queue2 = new ArrayBlockingQueue(6,true);

// ArrayBlockingQueue 源码展示
public ArrayBlockingQueue(int capacity) {
    this(capacity, false);
}
public ArrayBlockingQueue(int capacity, boolean fair) {
    if (capacity <= 0)
        throw new IllegalArgumentException();
    this.items = new Object[capacity];
    lock = new ReentrantLock(fair);
    notEmpty = lock.newCondition();
    notFull =  lock.newCondition();
}

4、DelayQueue

DelayQueue 是一个支持延时获取元素的无界阻塞队列,队列中的元素必须实现 Delayed 接口,在创建元素时可以指定延迟时间,只有到达了延迟的时间之后,才能获取到该元素。

实现了 Delayed 接口必须重写两个方法 ,getDelay(TimeUnit) 和 compareTo(Delayed),如下代码所示:

class DelayElement implements Delayed {
        @Override
        // 获取剩余时间
        public long getDelay(TimeUnit unit) {
            // do something
        }
        @Override
        // 队列里元素的排序依据
        public int compareTo(Delayed o) {
            // do something
        }
    }

DelayQueue 使用的完整示例 ,请参考以下代码:

public  class DelayTest {
    public static void main(String[] args) throws InterruptedException {
        DelayQueue delayQueue = new DelayQueue();
        delayQueue.put(new DelayElement(1000));
        delayQueue.put(new DelayElement(3000));
        delayQueue.put(new DelayElement(5000));
        System.out.println("开始时间:" +  DateFormat.getDateTimeInstance().format(new Date()));
        while (!delayQueue.isEmpty()){
            System.out.println(delayQueue.take());
        }
        System.out.println("结束时间:" +  DateFormat.getDateTimeInstance().format(new Date()));
    }

    static class DelayElement implements Delayed {
        // 延迟截止时间(单面:毫秒)
        long delayTime = System.currentTimeMillis();
        public DelayElement(long delayTime) {
            this.delayTime = (this.delayTime + delayTime);
        }
        @Override
        // 获取剩余时间
        public long getDelay(TimeUnit unit) {
            return unit.convert(delayTime - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
        }
        @Override
        // 队列里元素的排序依据
        public int compareTo(Delayed o) {
            if (this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS)) {
                return 1;
            } else if (this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS)) {
                return -1;
            } else {
                return 0;
            }
        }
        @Override
        public String toString() {
            return DateFormat.getDateTimeInstance().format(new Date(delayTime));
        }
    }
}

程序执行结果:

开始时间:2019-6-13 20:40:38
2019-6-13 20:40:39
2019-6-13 20:40:41
2019-6-13 20:40:43
结束时间:2019-6-13 20:40:43

4、非阻塞队列

1、ConcurrentLinkedQueue

ConcurrentLinkedQueue 是一个基于链接节点的无界线程安全队列,它采用先进先出的规则对节点进行排序,当我们添加一个元素的时候,它会添加到队列的尾部;当我们获取一个元素时,它会返回队列头部的元素。

它的入队和出队操作均利用 CAS(Compare And Set)更新,这样允许多个线程并发执行,并且不会因为加锁而阻塞线程,使得并发性能更好。

ConcurrentLinkedQueue 使用示例:

ConcurrentLinkedQueue concurrentLinkedQueue = new ConcurrentLinkedQueue();
concurrentLinkedQueue.add("Dog");
concurrentLinkedQueue.add("Cat");
while (!concurrentLinkedQueue.isEmpty()) {
    System.out.println(concurrentLinkedQueue.poll());
}

执行结果:

Dog
Cat

可以看出不管是阻塞队列还是非阻塞队列,使用方法都是类似的,区别是底层的实现方式。

5、优先级队列

1、PriorityQueue

PriorityQueue 一个基于优先级堆的无界优先级队列。优先级队列的元素按照其自然顺序进行排序,或者根据构造队列时提供的 Comparator 进行排序,具体取决于所使用的构造方法。优先级队列不允许使用 null 元素。

PriorityQueue 代码使用示例 :

Queue<Integer> priorityQueue = new PriorityQueue(new Comparator<Integer>() {
    @Override
    public int compare(Integer o1, Integer o2) {
        // 非自然排序,数字倒序
        return o2 - o1;
    }
});
priorityQueue.add(3);
priorityQueue.add(1);
priorityQueue.add(2);
while (!priorityQueue.isEmpty()) {
    Integer i = priorityQueue.poll();
    System.out.println(i);
}

程序执行的结果是

3
2
1

PriorityQueue 注意的点 :

PriorityQueue 是非线程安全的,在多线程情况下可使用 PriorityBlockingQueue 类替代;PriorityQueue 不允许插入 null 元素。

三、相关面试题:

1、ArrayBlockingQueue 和 LinkedBlockingQueue 的区别是什么?

答:ArrayBlockingQueue 和 LinkedBlockingQueue 都实现自阻塞队列 BlockingQueue,它们的区别主要体现在以下几个方面:

  • ArrayBlockingQueue 使用时必须指定容量值,LinkedBlockingQueue 可以不用指定;
  • ArrayBlockingQueue 的最大容量值是使用时指定的,并且指定之后就不允许修改;而 LinkedBlockingQueue 最大的容量为 Integer.MAX_VALUE;
  • ArrayBlockingQueue 数据存储容器是采用数组存储的;而 LinkedBlockingQueue 采用的是 Node 节点存储的。

2、LinkedList 中 add() 和 offer() 有什么关系?

答:add() 和 offer() 都是添加元素到队列尾部。offer 方法是基于 add 方法实现的,Offer 的源码如下:

public boolean offer(E e) {
    return add(e);
}

3、Queue 和 Deque 有什么区别?

答:Queue 属于一般队列,Deque 属于双端队列。一般队列是先进先出,也就是只有先进的才能先出;而双端队列则是两端都能插入和删除元素。

4、LinkedList 属于一般队列还是双端队列?

答:LinkedList 实现了 Deque 属于双端队列,因此拥有 addFirst(E)、addLast(E)、getFirst()、getLast() 等方法。

5、以下说法错误的是?

A:DelayQueue 内部是基于 PriorityQueue 实现的
B:PriorityBlockingQueue 不是先进先出的数据存储方式
C:LinkedBlockingQueue 默认容量是无限大的
D:ArrayBlockingQueue 内部的存储单元是数组,初始化时必须指定队列容量

答:C
题目解析:LinkedBlockingQueue 默认容量是 Integer.MAX_VALUE,并不是无限大的。

6、.关于 ArrayBlockingQueue 说法不正确的是?

A:ArrayBlockingQueue 是线程安全的
B:ArrayBlockingQueue 元素允许为 null
C:ArrayBlockingQueue 主要应用场景是“生产者-消费者”模型
D:ArrayBlockingQueue 必须显示地设置容量

答:B

题目解析:ArrayBlockingQueue 不允许元素为 null,如果添加一个 null 元素,会抛 NullPointerException 异常。

7、以下程序执行的结果是什么?

PriorityQueue priorityQueue = new PriorityQueue();
priorityQueue.add(null);
System.out.println(priorityQueue.size());

答:程序执行报错,PriorityQueue 不能插入 null。

8、Java 中常见的阻塞队列有哪些?

答:Java 中常见的阻塞队列如下:

  • ArrayBlockingQueue,由数组结构组成的有界阻塞队列;
  • PriorityBlockingQueue,支持优先级排序的无界阻塞队列;
  • SynchronousQueue,是一个不存储元素的阻塞队列,会直接将任务交给消费者,必须等队列中的添加元素被消费后才能继续添加新的元素;
  • LinkedBlockingQueue,由链表结构组成的阻塞队列;DelayQueue,支持延时获取元素的无界阻塞队列。

9、有界队列和无界队列有哪些区别?

答:有界队列和无界队列的区别如下。

  • 有界队列:有固定大小的队列叫做有界队列,比如:new ArrayBlockingQueue(6),6 就是队列的大小。
  • 无界队列:指的是没有设置固定大小的队列,这些队列的特点是可以直接入列,直到溢出。它们并不是真的无界,它们最大值通常为 Integer.MAX_VALUE,只是平常很少能用到这么大的容量(超过 Integer.MAX_VALUE),因此从使用者的体验上,就相当于 “无界”。

10、如何手动实现一个延迟消息队列?

答:说到延迟消息队列,我们应该可以第一时间想到要使用 DelayQueue 延迟队列来解决这个问题。实现思路,消息队列分为生产者和消费者,生产者用于增加消息,消费者用于获取并消费消息,我们只需要生产者把消息放入到 DelayQueue 队列并设置延迟时间,消费者循环使用 take() 阻塞获取消息即可。完整的实现代码如下:

public class CustomDelayQueue {
    // 消息编号
    static AtomicInteger MESSAGENO = new AtomicInteger(1);

    public static void main(String[] args) throws InterruptedException {
        DelayQueue<DelayedElement> delayQueue = new DelayQueue<>();
        // 生产者1
        producer(delayQueue, "生产者1");
        // 生产者2
        producer(delayQueue, "生产者2");
        // 消费者
        consumer(delayQueue);
    }

    //生产者
    private static void producer(DelayQueue<DelayedElement> delayQueue, String name) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    // 产生 1~5 秒的随机数
                    long time = 1000L * (new Random().nextInt(5) + 1);
                    try {
                        Thread.sleep(time);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                    // 组合消息体
                    String message = String.format("%s,消息编号:%s 发送时间:%s 延迟:%s 秒",
                            name, MESSAGENO.getAndIncrement(), DateFormat.getDateTimeInstance().format(new Date()), time / 1000);
                    // 生产消息
                    delayQueue.put(new DelayedElement(message, time));
                }
            }
        }).start();
    }

    //消费者
    private static void consumer(DelayQueue<DelayedElement> delayQueue) {
        new Thread(new Runnable() {
            @Override
            public void run() {
                while (true) {
                    DelayedElement element = null;
                    try {
                        // 消费消息
                        element = delayQueue.take();
                        System.out.println(element);
                    } catch (InterruptedException e) {
                        e.printStackTrace();
                    }
                }
            }
        }).start();
    }

    // 延迟队列对象
    static class DelayedElement implements Delayed {
        // 过期时间(单位:毫秒)
        long time = System.currentTimeMillis();
        // 消息体
        String message;
        // 参数:delayTime 延迟时间(单位毫秒)
        public DelayedElement(String message, long delayTime) {
            this.time += delayTime;
            this.message = message;
        }
        @Override
        // 获取过期时间
        public long getDelay(TimeUnit unit) {
            return unit.convert(time - System.currentTimeMillis(), TimeUnit.MILLISECONDS);
        }
        @Override
        // 队列元素排序
        public int compareTo(Delayed o) {
            if (this.getDelay(TimeUnit.MILLISECONDS) > o.getDelay(TimeUnit.MILLISECONDS))
                return 1;
            else if (this.getDelay(TimeUnit.MILLISECONDS) < o.getDelay(TimeUnit.MILLISECONDS))
                return -1;
            else
                return 0;
        }
        @Override
        public String toString() {
            // 打印消息
            return message + " |执行时间:" + DateFormat.getDateTimeInstance().format(new Date());
        }
    }
}

以上程序支持多生产者,执行的结果如下:

生产者1,消息编号:1 发送时间:2019-6-12 20:38:37 延迟:2 秒 |执行时间:2019-6-12 20:38:39
生产者2,消息编号:2 发送时间:2019-6-12 20:38:37 延迟:2 秒 |执行时间:2019-6-12 20:38:39
生产者1,消息编号:3 发送时间:2019-6-12 20:38:41 延迟:4 秒 |执行时间:2019-6-12 20:38:45
生产者1,消息编号:5 发送时间:2019-6-12 20:38:43 延迟:2 秒 |执行时间:2019-6-12 20:38:45
......

11、总结:

  • 队列(Queue)按照是否阻塞可分为:阻塞队列 BlockingQueue 和 非阻塞队列。
  • 其中,双端队列 Deque 也属于非阻塞队列,双端队列除了拥有队列的先进先出的方法之外,还拥有自己独有的方法,如 addFirst()、addLast()、getFirst()、getLast() 等,支持首未插入和删除元素。
  • 队列中比较常用的两个队列还有 PriorityQueue(优先级队列)和 DelayQueue(延迟队列),可使用延迟队列来实现延迟消息队列,这也是面试中比较常考的问题之一。

参考地址1:https://zhuanlan.zhihu.com/p/510794870?utm_id=0

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,332评论 6 493
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,508评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,812评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,607评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,728评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,919评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,071评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,802评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,256评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,576评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,712评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,389评论 4 332
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,032评论 3 316
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,798评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,026评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,473评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,606评论 2 350

推荐阅读更多精彩内容