Python 快速排序的思考(快排 & K-th Max)

一、 快速排序与归并排序的比较

快速排序的最快的时间复杂度为O(n),最差情况下的时间复杂度为O(n^2),平均的时间复杂度为O(nlgn);
归并排序的时间复杂度在任何情况下都是O(nlgn);

快速排序的时间复杂度计算

每一轮快速排序的时间负责度都是O(n), 平均一共有lgn轮,故整体的平均时间复杂度为O(nlgn);

二、 快速排序思想

  1. 循环不变式:每一轮针对比较的值,在一轮完成之后,会移动到最终正确的位置。
  2. 排序特点:对于其中被选取参与排序的元素N,当其针对的排序完成后,左侧的元素都小于(大于)等于该元素,右侧的元素都大于(小于)等于该元素;
  3. 快排经典变种简化:Kth-max问题。
  4. 快速排序是的时间复杂度是平均时间复杂度,不同的初始情形,快排的时间复杂度不同。快排最差的情况有一下三种

(1)数组倒序有序;
(2)数组倒序有序;
(3)所有的元素都相同(1、2的特殊情形)

三 快速排序实现代码

# coding=utf-8
# environment: python3

def sort(array, low ,high):
    pivot = array[low]
    while low < high:
        while low < high and array[high] >= pivot:
            high -= 1
        while low < high and array[low] <= pivot:
            low += 1
        array[high] = array[low]
        array[low] = pivot
    return low

def quick_sort(array, low, high):
    # init the recursive function.
    if low < high:
        pivot_loc = subsort(array, low, high)
        quick_sort(array, low, pivot_loc-1)
        qucik_sort(array, pivot_loc+1, high)

if __name__ == "__main__":
    array = [49,38,65,97,76,13,27]
    print(array)
    # round 1 [38, 13, 27, ]
    quick_sort(array,0,len(array)-1)
    # after sort: [13, 27, 38, 49, 65, 76, 97]
    print(array)

四、 引申:Kth-Max问题思考

利用快排思路解决Kth-Max问题:
这里假设其中一个参与的元素X,其对应的下标为X.index;
由前文可知,每一轮快排都会使当前的元素N放置到最终的正确位置中,且左边的数字都小于等于X,右边的元素都大于等于X,故考虑元素X的位置,有以下三种情形:

  1. 若X的下标(降序排序)等于K,则X左方加上X本身为整个数组最大的K个元素,满足问题需求,返回结果;
  2. 若X的下标(降序排序)大于K,则针对下标范围为[X.index+ 1 : K]的子数组进行快速排序,直到满足要求1;
  3. 若X的下标(降序排序)小于K,则针对下标范围为[K + 1 : ]的子数组进行快速排序,直到满足要求1;

综上,当数组长度为N时,Kth-Max算法采用快排思想,平均的时间复杂度为(N/2 + N/4 + N/8 + ... + N/2^i),易证时间复杂度为O(N)。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,125评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,293评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,054评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,077评论 1 291
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,096评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,062评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,988评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,817评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,266评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,486评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,646评论 1 347
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,375评论 5 342
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,974评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,621评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,796评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,642评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,538评论 2 352

推荐阅读更多精彩内容

  • 算法思想贪心思想双指针排序快速选择堆排序桶排序荷兰国旗问题二分查找搜索BFSDFSBacktracking分治动态...
    第六象限阅读 3,083评论 0 0
  • 该系列文章主要是记录下自己暑假这段时间的学习笔记,暑期也在实习,抽空学了很多,每个方面的知识我都会另起一篇博客去记...
    Yanci516阅读 12,210评论 6 19
  • 坐在离离芳草中,认真听一首歌,深深浅浅置于其中,不被带走。多久没有这样的感受了? 躺在这最高处看云,连绵的云漫天铺...
    圆脸狸阅读 503评论 0 0
  • 其实我是一个超级精致的仙女 我有一个很朴素的爱好 喜欢淘各种各样物美价廉的好物 说白了就是 “别看我穷,但是我懂得...
    菜菜小仙女阅读 118评论 0 0
  • 说到改变,或许我是最不愿改变的人。或许是因为自己比较念旧。有很多的时候,对一些人和事物的记忆会一直比较深刻。 最近...
    豆豆在成长阅读 131评论 0 0