可视化工具netron的简单使用

  • netron介绍
    最近经常会遇到这样的情形,拿到一个开源的预训练模型作测试,想把它转到nccn或mnn平台,但是不知道模型中的输入输出名,这个时候我们自然就想到了用可视化工具画出网络来看一看。而netron就是一个可以支持各种框架的神经网络模型可视化工具。
  • 目前支持的框架
    根据netron的github(https://github.com/lutzroeder/Netron
    目前netron支持 ONNX (.onnx, .pb, .pbtxt), Keras (.h5, .keras), Core ML (.mlmodel), Caffe (.caffemodel, .prototxt), Caffe2 (predict_net.pb, predict_net.pbtxt), Darknet (.cfg), MXNet (.model, -symbol.json), ncnn (.param) and TensorFlow Lite (.tflite)。
    并且实验性支持TorchScript (.pt, .pth), PyTorch (.pt, .pth), Torch (.t7), Arm NN (.armnn), BigDL (.bigdl, .model), Chainer (.npz, .h5), CNTK (.model, .cntk), Deeplearning4j (.zip), MediaPipe (.pbtxt), ML.NET (.zip), MNN (.mnn), OpenVINO (.xml), PaddlePaddle (.zip, model), scikit-learn (.pkl), TensorFlow.js (model.json, .pb) and TensorFlow (.pb, .meta, .pbtxt, .ckpt, .index)。
  • 安装使用
#指定清华源安装
pip install netron -i  https://pypi.tuna.tsinghua.edu.cn/simple 

在预训练的模型文件同一目录下新建一个python文件netrontest.py

import netron
modelPath = "你的模型文件名.扩展名"
netron.start(modelPath)

在同一目录下打开命令行窗口执行python文件

python netrontest.py

这是会自动打开浏览器到地址http://localhost:8080
显示网络图。此时即可查看输入输出或其中层的信息。

©著作权归作者所有,转载或内容合作请联系作者
平台声明:文章内容(如有图片或视频亦包括在内)由作者上传并发布,文章内容仅代表作者本人观点,简书系信息发布平台,仅提供信息存储服务。

推荐阅读更多精彩内容