[论文笔记]A guide to convolution arithmetic for deep learning

Github

Chapter 1. Introduction

1.1 Discrete convolutions

N: N-D
n: number of output feature maps
m: number of input feature maps
k_j: kernel size along axis j
i_j: input size along axis j
s_j: stride (distance between two consecutive positions of the kernel) along axis j
p_j: zero padding (number of zeros concatenated at the beginning and at the end of an axis) along axis j

1.2 Pooling

Pooling operations reduce the size of feature maps by using some function to summarize subregions, such as taking the average or the maximum value.

Chapter 2. Convolution arithmetic

The analysis of the relationship between convolutional layer properties is eased by the fact that they don’t interact across axes. Because of that, this chapter will focus on the following simplified setting:

  • 2-D discrete convolutions (N = 2)
  • square inputs (i_1 = i_2 = i),
  • square kernel size (k_1 = k_2 = k),
  • same strides along both axes (s_1 = s_2 = s),
  • same zero padding along both axes (p_1 = p_2 = p).

Note: the results outlined here also generalize to the N-D and non-square cases.

2.1 No zero padding, unit strides (p=0, s=1)

Relationship 1. For any i and k, and for s = 1 and p = 0, o = (i - k) + 1.

2.2 Zero padding, unit strides (p>0, s=1)

Relationship 2. For any i, k and p, and for s = 1,
o = (i - k) + 2p + 1.

2.2.1 Half (same) padding (p=\frac{k-1}{2})

Relationship 3. For any i and for k odd (k = 2n + 1,n\in N), s = 1 and p = n,o= (i+2p)-k+1=(i+2n)-(2n+1)+1=i

2.2.2 Full padding (p=k-1)

Relationship 4. For any i and k, and for p = k - 1 and s = 1, o = i + 2(k - 1) - (k - 1)= i + (k - 1).

2.3 No zero padding, non-unit strides (p=0, s>1)

Relationship 5. For any i, k and s, and for p = 0,
o =\lfloor\frac{i - k}{s}\rfloor+1.

2.4 Zero padding, non-unit strides (p>0, s>1)

Relationship 6. For any i, k, p and s,
o =\lfloor\frac{i+2p-k}{s}\rfloor+1.

Chapter 3. Pooling arithmetic

Pooling does not involve zero padding (p=0).

Relationship 7. For any i, k and s,
o =\lfloor\frac{i - k}{s}\rfloor+1.

Chapter 4. Transposed convolution arithmetic

The need for transposed convolutions generally arises from the desire to use a transformation going in the opposite direction of a normal convolution.
Note: transposed convolution properties don’t interact across axes
We still use the same settings as chapter 2 in the following.

4.1 Convolution as a matrix operation

4.2 Transposed convolution

4.3 No zero padding, unit strides, transposed (p=0, s=1, C^T)

Relationship 8. A convolution described by s = 1, p = 0 and k has an associated transposed convolution described by k' = k, s' = s and p' = k - 1 and its output size is o' =i' + (k - 1):

i\xrightarrow[]{\quad k, s=1, p=0\quad} o=i-k+1
i'=o=i-k+1\xrightarrow[]{\; k'=k, s'=s, p'=k-1\;} o'=i'+2p'-k'+1=i

4.4 Zero padding, unit strides, transposed (p>0, s=1, C^T)

Relationship 9. A convolution described by s = 1, k and p has an associated transposed convolution described by k' = k, s' = s and p' = k - p - 1 and its output size is
o' = i + (k - 1) - 2p

i\xrightarrow[]{\quad k, s=1, p\quad} o=i+2p-k+1
i'=o\xrightarrow[]{\; k'=k, s'=s, p'\;} o'=i'+2p'-k'+1=i\implies p'=k-p-1

4.4.1 Half (same) padding, transposed (p=\frac{k-1}{2}, C^T)

Relationship 10. A convolution described by k = 2n+1,n\in N, s = 1 and p = n has an associated transposed convolution described by k'= k, s'= s and p' = k-p-1=(2p+1)-p-1=p and its output size is o'=i'.

4.4.2 Full padding, transposed (p=k-1, C^T)

Relationship 11. A convolution described by s = 1, k and p =k-1 has an associated transposed convolution described by k' = k, s' = s and p' = k-p-1=0 and its output size is o'=i'-(k-1).

4.5 No zero padding, non-unit strides, transposed (p=0, s>1, C^T)

Relationship 12. A convolution described by p=0, k and s and whose input size is such that i-k is a multiple of s, has an associated transposed convolution described by\tilde{i'},k' = k, s' = 1 and p' = k-1, where \tilde{i'} is the size of the stretched input obtained by adding s-1 zeros between each input unit, and its output size is o'= s(i'-1)+k.

i\xrightarrow[]{\quad k, s, p=0\quad} o=\lfloor\frac{i-k}{s}\rfloor+1
\tilde{i'}=i'+(s-1)(i'-1)=s(i'-1)+1\xrightarrow[]{\; k'=k, s'=1, p'=k-1\;} o'=\lfloor\frac{\tilde{i'}+2p'-k'}{s'}\rfloor+1=s(i'-1)+k

4.6 Zero padding, non-unit strides, transposed (p>0, s>1, C^T)

Relationship 13. A convolution described by p, k and s and whose input size is such that i+2p-k is a multiple of s, has an associated transposed convolution described by\tilde{i'},k' = k, s' = 1 and p' = k-p-1, where \tilde{i'} is the size of the stretched input obtained by adding s-1 zeros between each input unit, and its output size is o'= s(i'-1)+k-2p.

i\xrightarrow[]{\quad k, s, p\quad} o=\lfloor\frac{i+2p-k}{s}\rfloor+1
\tilde{i'}=i'+(s-1)(i'-1)=s(i'-1)+1\xrightarrow[]{\; k'=k, s'=1, p'=k-p-1\;} o'=\lfloor\frac{\tilde{i'}+2p'-k'}{s'}\rfloor+1=s(i'-1)+k-2p

Relationship 14.A convolution described by p, k and s has an associated transposed convolution described bya, \tilde{i'},k' = k, s' = 1 and p' = k-p-1, where \tilde{i'} is the size of the stretched input obtained by adding s-1 zeros between each input unit, and a=i+2p-k mod s represents the number of zeros added to the bottom and right
edges of the input, its output size is o'= s(i'-1)+a+k-2p.

Chapter 5. Miscellaneous convolutions

5.1 Dilated convolutions

Dilated convolutions are used to cheaply increase the receptive field of output units without increasing the kernel size, there are usually d-1 spaces inserted between kernel elements such that d = 1 corresponds to a regular convolution.
A kernel of size k dilated by a factor d has an effective size \hat{k}=k+(k-1)(d-1)

Relationship 15. For any i, k, p and s, and for a dilation rate d, o=\lfloor\frac{i+2p-\hat{k}}{s}\rfloor+1=\lfloor\frac{i+2p-k-(k-1)(d-1)}{s}\rfloor+1.

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,463评论 6 497
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,868评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,213评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,666评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,759评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,725评论 1 294
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,716评论 3 415
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,484评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,928评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,233评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,393评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,073评论 5 340
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,718评论 3 324
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,308评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,538评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,338评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,260评论 2 352

推荐阅读更多精彩内容

  • rljs by sennchi Timeline of History Part One The Cognitiv...
    sennchi阅读 7,320评论 0 10
  • 添加方法到相应的菜单栏using UnityEngine;using UnityEditor;public cla...
    AngerCow阅读 486评论 0 0
  • 骄阳似火,独自坐在自家阳台上,看着人来人往,车水马龙的街道,回头看着那张熟睡中中依然挂着甜蜜笑容的女孩,又回忆起曾...
    一只小邋遢阅读 297评论 0 0
  • 平凡,生活中处处皆是。 亲情、友情平凡不过,但它赐予我们的关爱与帮助,让我们感动,让我们的心灵一次一次地洗礼;家庭...
    禾小沫阅读 51评论 0 0