产品经理如何提高用户画像效果?SIKT模型

    产品经理做用户画像,最担心被业务方反馈:没效果。这往往是由用户画像与业务场景脱节造成的。那么我们该如何从业务场景出发,让用户画像更有效?一般来说,我们可以采用SIKT模型解决这个问题。

用户画像

    1、SIKT模型原理

      SIKT模型是一套梳理标签的方法。用户画像的基础是标签,标签是构建画像体系的砖石。若想提高用户画像的效果,标签本身就需要有价值,需要从业务场景出发,层层递进,而非凭直觉脱口而出。

      而SIKT模型的使用步骤如下:

      第一步:梳理业务场景。我们需要先思考:我要解决什么问题?

      第二步:梳理关键指标。我们需要再思考:用什么指标衡量问题解决?

      第三步:梳理关键行动。我们需要再思考:我做什么事能解决问题?

      第四步:筛选有用标签。数据协助思考:用什么标签能提升行动效率。

SIKT模型原理

    2、按照模型梳理标签

      我们按照SIKT模型步骤一步步梳理出符合业务场景的标签,具体如下:

      (1)有明确的使用场景。避免了信息过剩,让使用者聚焦思考问题。

      (2)有明确的考核指标。明确了考核方法,改善了关键指标就是效果。

      (3)有明确的落地动作。清晰了标签效果,同一动作,使用标签前后的差异。

      另外需注意,标签并非万能,有些业务场景可能不需要标签。因此使用此方法的第一步,就是先梳理业务场景,把那些和标签高度相关的场景找出来。

    3、梳理业务场景

      从本质上看,标签是一系列业务信息的浓缩。与未浓缩的业务信息相比,标签有三大优势:

      (1)便于查询,使用标签可以进行信息搜索,提高搜索效率;

      (2)便于分类,标签有利于分类效率的提升,特别针对明确不再使用的分类,能够迅速筛选出来;

      (3)便于挑选,如果对于可用的手段有了标签分类,就能快速找出适合当前的手段,避免了重重复复的分析论证,从而极大提升执行效率。

SIKT模型原理 标签作用

    4、案例说明

      举例说明,如企业投放部门,计划选择大V进行私域投放。那么投放场景的指标:投放转化率。

      由于是私域投放,买了大V的广告位以后,就只能全覆盖该大V的粉丝,无法在决策阶段做用户分群。所以在场景拆分的时候,决策阶段没法用标签优化。但在认知现状、方法选择阶段,标签能帮上忙。

      认知阶段:大V有很多,一个大V覆盖各个平台。此时如果有标签对大V进行分类,就能轻松查看该大V的基本情况,挑选出合适的大V。 选择阶段:同一个广告,可能有5、6种不同素材可以使用。此时如果有标签对素材进行分类,就能减少筛选难度,提升效率。

用SIKT模型原理 进行用户画像分析

       需要注意,这里的标签并非全部为用户标签,如大V分类标签,素材分类标签等。这些标签并非一次性产生,而是在合作中,广告投放中标记出来。

      为了提高用户需求分析质量,尽早发现需求缺陷,CoCode特开发了需求分析工具,使用AI,通过需求测试和一致性检测,能够在几分钟内快速分析用户需求缺陷,如歧义、重复、遗漏、不一致和复杂性等问题,精准锁定需求问题,从而更高效地修改缺陷,提高用户需求质量。

CoCode需求分析工具

        目前CoCode发布一系列AI开发工具:Co-Project智能项目管理工具(需求条目化、自动生成测试用例)、需求分析工具、评审分析工具、故事点估算工具。其中Co-Project项目管理平台发布4大版本,30天免费试用;并发布一系列CMMI高效落地工具,实现CMMI标准过程全覆盖,全面支持CMMI3-5级落地。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,240评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,328评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,182评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,121评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,135评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,093评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,013评论 3 417
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,854评论 0 273
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,295评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,513评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,678评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,398评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,989评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,636评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,801评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,657评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,558评论 2 352

推荐阅读更多精彩内容