MobileNetV2-SSDLite代码分析-5 train

Github库地址:pytorch-ssd/train_ssd.py

创建网络

create_net = lambda num: create_mobilenetv2_ssd_lite(num, width_mult = args.mb2_width_mult) #这个写法有点意思哈。相当于create_net是一个能接受参数的函数!基于create_mobilenetv2_ssd_lite的函数,这个写法第一次见还纠结了一下,看完觉得很棒
config = mobilenetv1_ssd_config

net = create_net(num_classes)

设定transform

train_transform = TrainAugmentation(config.image_size, config.image_mean, config.image_std) #测试图像做的变换
target_transform = MatchPrior(config.priors, config.center_variance,
config.size_variance, 0.5) #对anchor做的变换(分配到具体网格中)
test_transform = TestTransform(config.image_size, config.image_mean, config.image_std) #对测试图像做的变换

获得数据集

dataset = VOCDataset(dataset_path, transform=train_transform,
                                 target_transform=target_transform)
datasets.append(dataset)
train_dataset = ConcatDataset(datasets) # 因为可能有多个数据集,作者写了一个拼接
train_loader = DataLoader(train_dataset, args.batch_size,
                              num_workers=args.num_workers,
                              shuffle=True)

设置freeze

作者的逻辑很棒。它将mobilenet+SSD各个部分拆开来,使得后续的处理也方便了很多。比如这里想要freeze,直接设置net.base_net即可

freeze_net_layers(net.base_net)

def freeze_net_layers(net):
    for param in net.parameters():
        param.requires_grad = False

网络初始化

if args.resume:
    net.load(args.resume)
elif args.base_net:
    net.init_from_base_net(args.base_net)
elif args.pretrained_ssd:
    net.init_from_pretrained_ssd(args.pretrained_ssd)

可选择是继续上一次的模型,还是仅训练base_net还是加载预训练好的模型

损失和优化函数

criterion = MultiboxLoss(config.priors, iou_threshold=0.5, neg_pos_ratio=3,
                             center_variance=0.1, size_variance=0.2, device=DEVICE)
optimizer = torch.optim.SGD(params, lr=args.lr, momentum=args.momentum,
                                weight_decay=args.weight_decay)
  • MultiboxLoss是写好的多用检测的损失函数。它包括使用cross entroy计算出的分类loss和用smooth L1计算出来的location loss

  • 优化函数:这是一个使用momentum的min_batch gradient descent。也就是请注意,虽然它名义上说是SGD,但其实就是个MBGD

    这个优化函数还有一个细节,即如何调整学习率

    不需要调整学习率的通用流程如下:

    criterion = nn.MSELoss()
    optimizer = optim.SGD(model.parameters(), lr=1e-4)
    for epoch in range(1000):
        for step, (inputs, targets) in enumerate(loader):
            # 前向传播
            out = model(inputs)
            loss = criterion(out, target)
    
            # 反向传播
            optimizer.zero_grad()
            loss.backward()
    
            # 调整参数
            optimizer.step()
    
    

如果想要调整学习率,通过会定义一种学习率调整的策略scheduler,其通用流程如下:

scheduler = XXXLR(optimizer,...) #设定一种学习率调整的策略
for epoch in range(100):
    scheduler.step() 
    train(...) # optimizer.zero_grad() optimizer.step()仍然需要
    validate(...)

这块的代码具体如下。

if args.scheduler == 'multi-step':
    milestones = [int(v.strip()) for v in args.milestones.split(",")]
    scheduler = MultiStepLR(optimizer, milestones=milestones,gamma=0.1, last_epoch=last_epoch)
elif args.scheduler == 'cosine':
    scheduler = CosineAnnealingLR(optimizer, args.t_max, last_epoch=last_epoch)

对学习率改变的策略做一个总结, 参考

  • torch.optim.lr_scheduler.LambdaLR(optimizer, lr_lambda, last_epoch=-1)

    将每个参数组的学习率设置为给定函数的初始值,当last_epoch=-1时,设置初始的lr作为lr;

    optimizer:封装好的优化器

    lr_lambda(function or list):一个计算每个epoch的学习率的函数或者一个list;

    last_epoch:最后一个epoch的索引

  • torch.optim.lr_scheduler.StepLR(optimizer, step_size, gamma=0.1, last_epoch=-1)

    当epoch每过step_size时,学习率都变为初始学习率的gamma倍

  • orch.optim.lr_scheduler.MultiStepLR(optimizer, milestones, gamma=0.1, last_epoch=-1)

    当训练epoch达到milestones值时,初始学习率乘以gamma得到新的学习率;

    milestones为一个数组,如 [50,70]. gamma为倍数。如果learning rate开始为0.01 ,则当epoch为50时变为0.001,epoch 为70 时变为0.0001。

  • torch.optim.lr_scheduler.ExponentialLR(optimizer, gamma, last_epoch=-1)

    每个epoch学习率都变为初始学习率的gamma倍

  • torch.optim.lr_scheduler.CosineAnnealingLR(optimizer, T_max, eta_min=0, last_epoch=-1)

    利用cos曲线降低学习率,该方法来源SGDR

  • CLASS torch.optim.lr_scheduler.ReduceLROnPlateau(optimizer, mode='min', factor=0.1, patience=10, verbose=False, threshold=0.0001, threshold_mode='rel', cooldown=0, min_lr=0, eps=1e-08)

    当参考的评价指标停止改进时,降低学习率,factor为每次下降的比例,训练过程中,当指标连续patience次数还没有改进时,降低学习率

训练网络做迭代

for epoch in range(last_epoch + 1, args.num_epochs):
    scheduler.step()
    # 训练
    train(train_loader, net, criterion, optimizer,
          device=DEVICE, debug_steps=args.debug_steps, epoch=epoch)

    if epoch % args.validation_epochs == 0 or epoch == args.num_epochs - 1:
        # 验证
        val_loss, val_regression_loss, val_classification_loss = test(val_loader, net, criterion, DEVICE)
        model_path = os.path.join(args.checkpoint_folder, f"{args.net}-Epoch-{epoch}-Loss-{val_loss}.pth")
        net.save(model_path)
        logging.info(f"Saved model {model_path}")

训练过程

def train(loader, net, criterion, optimizer, device, debug_steps=100, epoch=-1):
    net.train(True) # 还可以写成net.train()
    running_loss = 0.0
    running_regression_loss = 0.0
    running_classification_loss = 0.0
    for i, data in enumerate(loader):
        images, boxes, labels = data
        images = images.to(device)
        boxes = boxes.to(device)
        labels = labels.to(device)

        optimizer.zero_grad() # 虽然用了scheduler,但还是要将optimizer初始化
        confidence, locations = net(images)
        regression_loss, classification_loss = criterion(confidence, locations, labels, boxes)  # TODO CHANGE BOXES
        loss = regression_loss + classification_loss
        loss.backward()
        optimizer.step()

        # 这一块儿没看懂,好像是为了调试用的,需要测试
        running_loss += loss.item()
        running_regression_loss += regression_loss.item()
        running_classification_loss += classification_loss.item()
        if i and i % debug_steps == 0:
            avg_loss = running_loss / debug_steps
            avg_reg_loss = running_regression_loss / debug_steps
            avg_clf_loss = running_classification_loss / debug_steps
            running_loss = 0.0
            running_regression_loss = 0.0
            running_classification_loss = 0.0

测试过程

def test(loader, net, criterion, device):
    net.eval()
    running_loss = 0.0
    running_regression_loss = 0.0
    running_classification_loss = 0.0
    num = 0
    for _, data in enumerate(loader):
        images, boxes, labels = data
        images = images.to(device)
        boxes = boxes.to(device)
        labels = labels.to(device)
        num += 1

        with torch.no_grad():
            confidence, locations = net(images)
            regression_loss, classification_loss = criterion(confidence, locations, labels, boxes)
            loss = regression_loss + classification_loss

        running_loss += loss.item()
        running_regression_loss += regression_loss.item()
        running_classification_loss += classification_loss.item()
    return running_loss / num, running_regression_loss / num, running_classification_loss / num
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 213,335评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,895评论 3 387
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,766评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,918评论 1 285
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,042评论 6 385
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,169评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,219评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,976评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,393评论 1 304
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,711评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,876评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,562评论 4 336
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,193评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,903评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,142评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,699评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,764评论 2 351