【短文】Spark危机与机遇杂谈

MLFlow

昨天发了一篇文章Spark团队新作MLFlow 解决了什么问题 描述了我对MLFlow的一些看法,现在想来,Spark团队是非常聪明的,AI同学都有自己的社区,自己的生态,Spark则是在工程研发群体具有很大的影响力,而在AI领域并没有太大号召力。所以它其实是没办法通过一个颠覆性的东西去让AI同学转移过来的,而MLFlow并没有改变AI同学的原有习惯和流程,他提供了一些辅助工具和标准,解决了一些痛点,慢慢渗透,从而实现慢慢转型,当然,最后也完全可能也掀不起什么波澜。

Spark光鲜背后的挑战

第一个便是AI浪潮崛起,对Spark即是危机也是机遇。DB现在一直宣称自己是一家AI公司,不过你可能会好奇,为什么Spark背后的DB公司不好好固守数据处理方面的优势,而不断尝试转型AI呢? 刨去整个资本市场和技术浪潮不谈,其实最大的问题是未来必然是AI框架倒推数据处理框架。AI框架很可能衍生出适合自己的数据处理框架,比如tensorflow,对tf.data 进行了很大的增强,方便做数据处理。如果Spark不主动出击,未来会很被动。

第二个就是流式了,随着流式时代的来临, 而在此之前Spark 在流式领域一直不紧不慢,加固在批处理方面的优势的同时也丧失了流领域的先机,很多公司(尤其是云公司,比如阿里云,华为等)都转向flink。 这也使得Spark在传统数据处理领域不断遭受新的挑战。(我在16年的时候,就不断强调流式计算的重要性,比如这篇文章数据天生就是流式的,为此还专门建立了一个专题,感兴趣的同学可以看看)

步履日渐沉重

Spark还提了一个 Hydrogen 设计,从而使得Spark能够更好的结合深度学习框架。从某种角度而言是顺应形势,但其实是在转型AI的情况下不得已而为之。

依然是王者

Spark 依然是我用过最好用的工具,依然有最好的生态。基于它之上,做很多事情会变得很轻松。

后话

其实我觉得和AI进行适配,不一定是朝着整合AI框架的方向发展。前面我们提到未来必然是AI框架倒推数据处理框架,只要让Spark能够更好的为AI做数据预处理,成为事实标准,并且适配主流AI框架,那么Spark必然会有一个新的护城河。最简单的例子,Spark 2.3 已经支持图片处理了,但是其实还是蛮多问题的,是可以做的更好的,比如是否提供一些方法直接把一张图片读取成一个hwn的张量(这种是可以直接喂给常见的深度学习算法的)。另外能不能支持张量输出? 总之最好的策略其实是压缩AI框架的边界,保证Spark在数据处理方面的绝对垄断地位。我在实际使用中发现,很多数据预处理,Spark目前做起来是不方便的,非得用AI算法库的函数。

当然,还有就是加速流的发展,并且加大这方面的宣传和投入,确定在数据处理第二阶段依然能够保持领先优势。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 217,542评论 6 504
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,822评论 3 394
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 163,912评论 0 354
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,449评论 1 293
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,500评论 6 392
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,370评论 1 302
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,193评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,074评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,505评论 1 314
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,722评论 3 335
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,841评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,569评论 5 345
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,168评论 3 328
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,783评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,918评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,962评论 2 370
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,781评论 2 354

推荐阅读更多精彩内容