方差分析

方差分析(analysis of variation, ANOVA) 又称变异数分析或F检验,用于两个及两个以上样本均值差别的显著性检验,其目的是推断两组或多组数据的总体均值是否相同,检验两个或多个样本均值的差异是否有统计学意义。
方差分析需要满足两个前置条件:独立方差性方差齐性。独立方差性是指样本必须来自正态分布总体,并且样本间是相互独立的。方差齐性则是指抽样的总体必须是等方差的。
从函数形式上看,方差分析和回归都是广义线性模型的特例。
引起观测值波动的因素主要有两类:一种是试验过程中随机因素的干扰或观测误差因此起不可控制的随机误差;另外一种是由于试验中试验条件不同一起的可以控制的因子效应。方差分析的基本思路就是将总体变异方差分解成因子效应和试验误差,并对其作出数量估计,明确各个变异因素在总变异中所占的重要程度作为进一步统计推断的依据。
根据引起观测数据波动的因子的数量,方差分析可分为单因素方差分析和双因素方差分析。在单/双因素方差分析的基础上包含一个或多个定量的协变量则称为单/双因素协方差分析。

单因素方差分析

单因素方差分析是指对单因素试验结果进行分析,检验因素对试验结果有无显著性影响的方法。单因素方差分析是用来检验多个平均数之间的差异,从而确定因素对试验结果有无显著性影响的一种统计方法。对于完全随机设计试验且处理数大于2时可以用单因素方差分析(等于2 时用t检验)。离差平方和的分解公式为:SST(总和)=SSR(组间)+SSE(组内),F统计量为MSR/MSE,MSR=SSR/k-1,MSE=SSE/n-k。其中SST为总离差、SSR为组间平方和、SSE为组内平方和或残差平方和、MSR为组间均方差、MSE为组内均方差。

单因素方差分析方法选择:
单因素方差分析方法选择
双因素方差分析

研究两个因素的不同水平对试验结果的影响是否显著的问题就称作双因素方差分析,分别对两个因素进行检验,考察各自的作用,同时分析两个因素(因素A和因素 B)对试验结果的影响。如果因素A和因素B对试验结果的影响是相互独立的,则可以分别考察各自的影响,这种双因素方差分析称为无交互作用的双因素方差分析,也叫无重复双因素方差分析。无交互作用的双因素方差分析,相当于对每个因素分别进行单因素方差分析。如果因素A和因素B除了各自对试验结果的影响外,还产生额外的新影响,这种额外的影响称为交互作用,这时的双因素方差分析则称为有交互作用的双因素方差分析,也叫有重复双因素方差分析。可用于随机区组实验设计,用来分析两个因素的不同水平对结果是否有显著影响,以及两因素之间是否存

有交互作用的双因素方差分析

有交互作用的方差分析将:总变异分解为因素A的变异,因素B的变异,A和B交互导致的变异和误差导致的变异。

无交互作用的双因素方差分析

无交互作用的方差分析将:总变异分解为因素A的变异,因素B的变异和误差导致的变异。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,470评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,393评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,577评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,176评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,189评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,155评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,041评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,903评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,319评论 1 310
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,539评论 2 332
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,703评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,417评论 5 343
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,013评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,664评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,818评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,711评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,601评论 2 353

推荐阅读更多精彩内容