tensorflow的inception使用分类

查看inception的结构:

inception_graph_def_file = r'\classify_image_graph_def.pb'
log_dir = './logs'
with tf.Session() as sess:
    #创建一个图来存放google训练好的模型
    with tf.gfile.FastGFile(inception_graph_def_file, 'rb') as f:
        graph_def = tf.GraphDef()
        graph_def.ParseFromString(f.read())
        tf.import_graph_def(graph_def, name='')
    #保存图的结构
    writer = tf.summary.FileWriter(log_dir, sess.graph)
    writer.close()

利用inception进行图片的分类

import tensorflow as tf
import os
import numpy as np
import re
from PIL import Image
import matplotlib.pyplot as plt


class NodeLookup(object):
    def __init__(self):  
        label_lookup_path = 'inception_model/imagenet_2012_challenge_label_map_proto.pbtxt'   
        uid_lookup_path = 'inception_model/imagenet_synset_to_human_label_map.txt'
        self.node_lookup = self.load(label_lookup_path, uid_lookup_path)

    def load(self, label_lookup_path, uid_lookup_path):
        # 加载分类字符串n********对应分类名称的文件
        proto_as_ascii_lines = tf.gfile.GFile(uid_lookup_path).readlines()
        uid_to_human = {}
        #一行一行读取数据
        for line in proto_as_ascii_lines :
            #去掉换行符
            line=line.strip('\n')
            #按照'\t'分割
            parsed_items = line.split('\t')
            #获取分类编号
            uid = parsed_items[0]
            #获取分类名称
            human_string = parsed_items[1]
            #保存编号字符串n********与分类名称映射关系
            uid_to_human[uid] = human_string

        # 加载分类字符串n********对应分类编号1-1000的文件
        proto_as_ascii = tf.gfile.GFile(label_lookup_path).readlines()
        node_id_to_uid = {}
        for line in proto_as_ascii:
            if line.startswith('  target_class:'):
                #获取分类编号1-1000
                target_class = int(line.split(': ')[1])
            if line.startswith('  target_class_string:'):
                #获取编号字符串n********
                target_class_string = line.split(': ')[1]
                #保存分类编号1-1000与编号字符串n********映射关系
                node_id_to_uid[target_class] = target_class_string[1:-2]

        #建立分类编号1-1000对应分类名称的映射关系
        node_id_to_name = {}
        for key, val in node_id_to_uid.items():
            #获取分类名称
            name = uid_to_human[val]
            #建立分类编号1-1000到分类名称的映射关系
            node_id_to_name[key] = name
        return node_id_to_name
    #传入分类编号1-1000返回分类名称
    def id_to_string(self, node_id):
        if node_id not in self.node_lookup:
            return ''
        return self.node_lookup[node_id]

解释文件imagenet_2012_challenge_label_map_proto.pbtxt

target_class: 449 类别的名称,也就是第499类
target_class_string: "n01440764",第499类的名称
下面是imagenet_2012_challenge_label_map_proto.pbtxt的格式:

entry {
  target_class: 449
  target_class_string: "n01440764"
}
entry {
  target_class: 450
  target_class_string: "n01443537"
}
entry {
  target_class: 442
  target_class_string: "n01484850"
}

解释文件imagenet_synset_to_human_label_map.txt

接着上面的第499类的名称,它后面的名称是n01440764,所以
n01440764的就是tench, Tinca tinca
下面是imagenet_synset_to_human_label_map.txt的格式:

n01440764   tench, Tinca tinca
n01441117   dace, Leuciscus leuciscus

加载一个classify_image_graph_def.pb的模型

这是默认图就是已经预训练的参数与模型结构

#创建一个图来存放google训练好的模型
with tf.gfile.FastGFile('inception_model/classify_image_graph_def.pb', 'rb') as f:
    graph_def = tf.GraphDef()
    graph_def.ParseFromString(f.read())
    tf.import_graph_def(graph_def, name='')

这时候利用see.run()就可以算出图形结构


with tf.Session() as sess:
    softmax_tensor = sess.graph.get_tensor_by_name('softmax:0')
    #遍历目录
    for root,dirs,files in os.walk('images/'):
        for file in files:
            #载入图片
            image_data = tf.gfile.FastGFile(os.path.join(root,file), 'rb').read()
            predictions = sess.run(softmax_tensor,{'DecodeJpeg/contents:0': image_data})#图片格式是jpg格式
            predictions = np.squeeze(predictions)#把结果转为1维数据

            #打印图片路径及名称
            image_path = os.path.join(root,file)
            print(image_path)
            #显示图片
            img=Image.open(image_path)
            plt.imshow(img)
            plt.axis('off')
            plt.show()

            #排序
            top_k = predictions.argsort()[-5:][::-1]
            node_lookup = NodeLookup()
            for node_id in top_k:     
                #获取分类名称
                human_string = node_lookup.id_to_string(node_id)
                #获取该分类的置信度
                score = predictions[node_id]
                print('%s (score = %.5f)' % (human_string, score))
            print()

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 205,132评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 87,802评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 151,566评论 0 338
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,858评论 1 277
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,867评论 5 368
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,695评论 1 282
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,064评论 3 399
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,705评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 42,915评论 1 300
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,677评论 2 323
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,796评论 1 333
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,432评论 4 322
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,041评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,992评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,223评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 45,185评论 2 352
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,535评论 2 343

推荐阅读更多精彩内容