详解神经网络反向传播算法之Into-Backpropagation

本文相关代码可以从Backpropagation下载

在上一篇文章小白也能看懂的BP反向传播算法之Towards-Backpropagation,我们学习了如何利用函数的微分来更新变量值,是函数值发生相应的变化!
例如,对于函数

image.png

我们想要更新变量a,b的值使f的值增加,就可以根据以下公式来更新
image.png

实际上这就是反向传播的最基本的思想!我们试想假设f函数是一个代价函数,神经网络的训练就是将代价函数的值变小,那么就是问题就变成了,对于一个代价函数f,我们将改变f的变量,使其f能减小,而f不就是关于每个神经元权重和偏置的函数么,f = f(w,b)。只不过是代价函数的变量更多,函数形式更复杂,更新起来相对复杂,这个我们将在后面详细介绍!但其实反向传播的基本思想就是根据微分去更新!

接下来,我们就将问题慢慢复杂化,一步一步接近最终的神经网络中的反向传播!

前文中,我们利用的是一个神经元,这里我们讲问题变复杂,变成两个神经元,并且是有嵌套关系的两个神经元!如下图:


image.png

,将输入值相加然后输出到第二个神经元,同时第二个神经元还接受输入c,并将两个值相乘,最后输出!
这个简单网络的正向传播很容易写出来:

def product(x, y):
    return x * y


def addition(x, y):
    return x + y


def forward(a, b, c):
    d = addition(a, b)
    return product(d, c)


print(forward(5, -6, 7))

Our aim is still the same as was in last post viz;we want to manipulate the values of our inputs a,b,c in such a way that the value of output fincreases.

现在开始我们的训练吧!
目标和之前一样,就是改变输入的a,b,c三个值,使函数f的值增加!之后我们就会发现,在这个过程中,我们会慢慢接触到反向传播的核心思想!
previous post.

初看上去,这个网络似乎比之前的要复杂,但依照我们前一篇文章提出的思路!我们先看函数f,函数f是一个关于输入a,b,c的函数,想要让函数f的值增加,直接微分即可,然后加上步长与微分的乘积,如下:


image.png

所以,核心问题在此就变成怎么求解函数f关于a,b,c的微分!
我们不能向之前一个神经元那样直接计算,因为此处的神经元是相互嵌套的。我们将函数f反着往回写!
首先,与函数f直接关联的神经元,就是接受两个输入,一个来自第一个神经元的,一个来自输入c,我们把第一个神经元的输出记作d,那么函数f就可以写成


image.png

然后我们继续反着往前推,对于d,其实就是第一个神经元的输出,也就是可以直接写成:


image.png

这样我们就反向的把函数f简化成了两个函数:


image.png

熟悉微积分的朋友应该就知道,我们在此可以利用函数求微分的链式法则。

首先考虑
image.png

分别求微分之后,如下:


image.png

然后再对
image.png

求微分

image.png

现在我们有四个微分的值:


image.png

我们的目标是求取这三个微分的值:


image.png

Backpropagation

这个时候,就轮到链式法则出场了!
链式法则其实就是:


image.png

如我们所见,链式法则有点代数的特点;因为莱布尼兹的导数符号表明两个分式中的du可以消掉,所以这个公式很好记忆。如果我们将导数看作变化率的话,直观上也很容易理解:

如果y的变化速度是u的a倍,u的变化速度是x的b倍,那么y的变化速度是x的ab倍。

或者用日常用语来说,如果车的速度是自行车的两倍,自行车的速度是步行的四倍,那么车的速度是步行的2⋅4=8倍。

所以此处我们对a,b应用链式法则,就能求取出微分:


image.png
image.png

所以最后求出微分就是:


image.png

根据以上求出的微分,我们就能很好的写出变量的更新规则:


image.png

我们用python实现上面的更新的过程:

def product(x, y):
    return x * y


def addition(x, y):
    return x + y


def forward(a, b, c):
    d = addition(a, b)
    return product(d, c)


print(forward(5, -6, 7))# output -7


def update(a, b, c):
    d = addition(a, b)
    h = 0.01

    derivative_f_d = c
    derivative_f_c = d
    derivative_d_a = 1
    derivative_d_b = 1

    derivative_f_a = derivative_f_d * derivative_d_a
    derivative_f_b = derivative_f_d * derivative_d_b

    a = a + h * derivative_f_a
    b = b + h * derivative_f_b
    c = c + h * derivative_f_c

    d = addition(a, b)
    return product(d, c)


print(update(5, -6, 7))# output -6.0113999999999965

可以看到更新之后的输出确实增大了!说明我们现在已经可以实现嵌套神经元的变量参数的更新了!离真正的反向传播的又近了一步!

Why did it work?

接下来,我们深入整个更新的过程,一步步分析看看究竟更新的本质是什么。首先,我们从输入到输出,分析一遍,前向传播,输入值为a=5,b=-6,c=7,很容易发现,第一个神经元的输出为d为1,然后第二个神经元输出为-7,所以最后结果就是-7!这就是此网络前向传播的过程!

然后我们开始反向传播,从输出开始分析,我们现在的目标是将输出的值增大,输出值是由-1*7得到的,现在要增加输出值,我们先不看微分,显然就是增加-1,减少7,这样就能使他们的乘积变大!我们再来计算微分,微分结果就是增加d的值,减少c的值。我们继续反向推理,这里d的值又是有a,b的值决定的!我们现在的目标又变成了
对于第一个神经元,减少输出值,那么很显然,只要减少a和b的值就行了,我们运用链式法则求取a,b的微分,也能得到相同的结果!
我们可以看到,当我们反向传播的时候,一个神经元的输入会变成上一个神经元的输出,然后他们之间相互影响,从而使传播下去!

我们倒着从输出分析到输入的过程就是反向传播的过程!我们通过计算微分可以从输出到输入更新变量的值,以使得输出朝着我们期待的方向的变化!

待续

本文就在这里结束了!本文将前文的更新变量的算法扩展到嵌套的多个神经元中,并应用到了链式法则求微分!而且在这个过程中,其实我们已经逐渐接触到反向传播的基本思想!

下一篇文章小白也能看懂的BP反向传播算法之Let's practice Backpropagation,我们会将算法应用到一个标准的神经网络中,让我们看看真正的反向传播算法是什么样的!

本文相关代码可以从Backpropagation下载

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 211,948评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,371评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 157,490评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,521评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,627评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 49,842评论 1 290
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 38,997评论 3 408
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,741评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,203评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,534评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,673评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,339评论 4 330
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 39,955评论 3 313
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,770评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,000评论 1 266
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,394评论 2 360
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,562评论 2 349

推荐阅读更多精彩内容