韦恩图UpSetR;比传统韦恩图更加清晰

最近刚好用到韦恩图,但是由于term比较多,VennDiagram的可视化效果并不好。然后再一个帖子里看到了UpSetR和Y叔的改进版本upsetplot。

UpSetR

一、一般情况下,我喜欢用最直接的方式输入

这种方式可以很方便的选择自己想展示的任意几个cluster之间的交集。

colorPalette<-c("#e41a1c","#377eb8","#4daf4a","9ecae1","#6baed6","#4292c6")
library(UpSetR)
input <- c(
  'Type 1'=  578,
  'Type 2' =  284,
  'Type 3' = 488,
  'Type 1&Type 3'  =205,
  'Type 2&Type 3'  =89,
  'Type 1&Type 2&Type 3'  =20)

data <- fromExpression(input)
upset(data, nsets = 9,  sets = c('Type 1', 'Type 2' , 'Type 3'),
            keep.order = TRUE,matrix.color ="#b35806", main.bar.color = colorPalette,
            sets.bar.color = c("#e41a1c","#377eb8","#4daf4a"), 
            point.size = 4,  line.size = 1.3,  mainbar.y.label = "IntersectionSize", 
            sets.x.label = "", mb.ratio = c(0.60, 0.40), text.scale = c(2, 2, 0.5, 0.5,2, 3))
可以根据参数改变每一个bar的颜色

二、使用table方式输入

当数据量较大,或者需要更复杂的展示的时候,可以使用table方式输入。

我们来看一下系统提供是movies数据

movies <- read.csv(system.file("extdata","movies.csv",package = "UpSetR"), header = TRUE, sep=";")
View(movies)
类似的数据类型

类似的格式的数据可以使用tidyr包中的pivot_wider函数生成,这个包中有很多函数对于数据变形很好用。

upset(movies, nsets = 7, nintersects = 30, mb.ratio = c(0.5, 0.5),
      order.by = c("freq", "degree"), decreasing = c(TRUE,FALSE))
movies

其他更加复杂的参数可以自行探索。

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 203,547评论 6 477
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,399评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,428评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,599评论 1 274
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,612评论 5 365
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,577评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,941评论 3 395
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,603评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,852评论 1 297
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,605评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,693评论 1 329
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,375评论 4 318
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,955评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,936评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,172评论 1 259
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 43,970评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,414评论 2 342

推荐阅读更多精彩内容