深入浅出HashMap

Map

map是一种 key/value组织的数据结构。在Java中Map是一个接口类,其实现类比较常用的有:
HashMap, LinkedHashMap, TreeMap。

HashMap

HashMap在Map家族中用的最多的集合类,他是非线程安全的,允许key为null,可以插入相同的key值,但是会覆盖value值。内部数据结构有数组,单链表,红黑树。

什么是HashMap

HashMap是Map接口的实现类,其内部成员机构如下


image
  • 其中table是个Node类型数组,是HashMap最重要的成员,用来存储每个节点数据。(其实Node是单链表数据结构)
  • entrySet是用来缓存Node节点数据的,用来遍历访问的
  • loadFactor是负载因子,用来表示table的填满程度 默认值为0.75
  • threshold 值为capacity * loadFactor 当table节点个数大于threshold值的时候,就需要resize了

HashMap的工作原理

先从一段简单的代码说起

public static void main(String[] args) {
    Map<Integer, String> integerStringMap = new HashMap<>();
    integerStringMap.put(1, "a");
    integerStringMap.put(2, "b");
    integerStringMap.put(3, "h");
    integerStringMap.put(6, "i");
    integerStringMap.put(17, "j");
    integerStringMap.put(49, "j");
    integerStringMap.put(25, "c");    
    System.out.println(integerStringMap.toString());
}    

该段代码简单的使用HashMap存储<Integer,String>值,下图为内部存储结构


HashMap

其中table只要插入一个值 其length(capacity)就会设置为16(该值可以自己设定,不设置则默认为16),当table size值超过 capacity * loadFactor(16 * 0.75 = 12) 时 table就会开始resize,然后重新组织数据并插入新的节点。可以通过以下代码,验证以上说法是否正确

integerStringMap.put(4, "l");
integerStringMap.put(5, "l");
integerStringMap.put(7, "l");
integerStringMap.put(8, "l");
integerStringMap.put(9, "l");
integerStringMap.put(10, "l");

再观察table 数组的length,同时threshold的值也相应变了,至于为啥某些元素index变了 在下面内容会详细讲解。


image

HashMap put方法工作原理

先从JDK8源码说起。

final V putVal(int hash, K key, V value, boolean onlyIfAbsent, boolean evict) {
   Node<K,V>[] tab; Node<K,V> p; int n, i;
   // 首次插入就将length初始化为16(DEFAULT_INITIAL_CAPACITY)
   if ((tab = table) == null || (n = tab.length) == 0)
       n = (tab = resize()).length;
   // index 使用(n-1) & hash 取代模运算[hash % n] n为2的n次幂
   if ((p = tab[i = (n - 1) & hash]) == null) // table对应的位置没有元素,则放入
       tab[i] = newNode(hash, key, value, null);
   else {  // 冲突 开始解决冲突
       Node<K,V> e; K k;
       // 确定插入节点与当前idx相同节点是否"相等"
       if (p.hash == hash &&
           ((k = p.key) == key || (key != null && key.equals(k))))
           // 取代原来的node,value值之后设定
           e = p;
       // 使用红黑树组织node(冲突的第一个节点就是树节点(Hash table中的)
       else if (p instanceof TreeNode)
           e = ((TreeNode<K,V>)p).putTreeVal(this, tab, hash, key, value);
       else {
           for (int binCount = 0; ; ++binCount) {
               // 找到单链表最后一个节点
               if ((e = p.next) == null) {
                   // 插入新的节点
                   p.next = newNode(hash, key, value, null);
                   // 如果单链表节点个数超过TREEIFY_THRESHOLD - 1则将单链表转为红黑树
                   if (binCount >= TREEIFY_THRESHOLD - 1) // -1 for 1st
                       treeifyBin(tab, hash);
                   break;
               }
               // 遍历单链表过程中找到key相同的node 则break
               if (e.hash == hash &&
                   ((k = e.key) == key || (key != null && key.equals(k))))
                   break;
               p = e;
           }
       }
       // 判定是否需要替换value值
       if (e != null) { // existing mapping for key
           V oldValue = e.value;
           if (!onlyIfAbsent || oldValue == null)
               e.value = value;
           // LinkedHashMap中使用
           afterNodeAccess(e);
           return oldValue;
       }
   }
   // table数组中元素个数
   ++modCount;
   // 需要扩容
   if (++size > threshold)
       resize();
   // LinkedHashMap回掉方法
   afterNodeInsertion(evict);
   return null;
}

上述方法就是HashMap插入节点的代码,主要有以下几个步骤

  1. 如果是第一个元素则 resize 初始化table
  2. 找到插入节点的index值,即bucket在table中的索引值
  3. 判断当前bucket节点是否有值,没有则直接插入,有则进行下面步骤,假设新节点为a,bucket处的原节点为b
  4. 首先判断a,b是否"相等",如果相等直接判断是否需要替换value值,如果不相等则进行下面步骤
  5. 如果index处节点是树TreeNode类型则插入到红黑树中,如果不是进行下面步骤
  6. 遍历以index处节点为头节点的单链表,遍历中如果遇到"相等"的节点,则停止遍历,然后判断是否需要替换value值
  7. 遍历到单链表结尾时(node->next == null),判断是否需要将单链表转为树(单链表节点个数超过8则需要转位树存储),若没有超过,则插入到单链表结尾
  8. 插入后判断

注意

以上说的“相等”是 hash值以及key的值或者equals都相等
e.hash == hash &&((k = e.key) == key || (key != null && key.equals(k)))

当两个Key对象hashCode相同会发生什么

当两个key对象hashCode相同时,HashMap会将2个node放在同一个bucket里,新加的就插入到单链表后面(节点个数<8)或者红黑树中

两个相同hashCode的key怎么取value

当2个相同hashCode的key去获取values时,HashMap首先会根据hashCode值进行index获取node的bucket位置,即定位到bucket的首节点,然后:如果是红黑树,则遍历树根据key.equals来定位value值;如果是单链表,原理一致,只是遍历的是单链表。具体可以查看源码。

HashMap怎么resize

当table.size大于threshold值时,HashMap就会进行一次resize操作。先看resize的代码,然后再分析其流程

final Node<K,V>[] resize() {
   // 保留原来的数据
   Node<K,V>[] oldTab = table;
   int oldCap = (oldTab == null) ? 0 : oldTab.length;
   int oldThr = threshold;
   int newCap, newThr = 0;
   // 非空
   if (oldCap > 0) {
       // 长度已经最大
       if (oldCap >= MAXIMUM_CAPACITY) {
           threshold = Integer.MAX_VALUE;
           return oldTab;
       }
       // 双倍当前数组length
       else if ((newCap = oldCap << 1) < MAXIMUM_CAPACITY &&
                oldCap >= DEFAULT_INITIAL_CAPACITY)
           newThr = oldThr << 1; // double threshold 扩大大小为原来的2倍
   }
   else if (oldThr > 0) // initial capacity was placed in threshold
       newCap = oldThr;
   else {               // zero initial threshold signifies using defaults
       newCap = DEFAULT_INITIAL_CAPACITY;
       newThr = (int)(DEFAULT_LOAD_FACTOR * DEFAULT_INITIAL_CAPACITY); // 12
   }
   if (newThr == 0) {
       float ft = (float)newCap * loadFactor;
       newThr = (newCap < MAXIMUM_CAPACITY && ft < (float)MAXIMUM_CAPACITY ?
                 (int)ft : Integer.MAX_VALUE);
   }
   threshold = newThr; // 设置新的 threshold
   @SuppressWarnings({"rawtypes","unchecked"})
       Node<K,V>[] newTab = (Node<K,V>[])new Node[newCap];
   table = newTab;  // 当前表指向新的空表 开始复制原先的数据 从oldTab
   if (oldTab != null) {
       for (int j = 0; j < oldCap; ++j) {
           Node<K,V> e;
           if ((e = oldTab[j]) != null) {
               oldTab[j] = null;
               // bucket只有一个节点直接将老节点插入到新的table中,注意要rehash的
               if (e.next == null)
                   newTab[e.hash & (newCap - 1)] = e;
               // 判断是不是树节点
               else if (e instanceof TreeNode)
                   ((TreeNode<K,V>)e).split(this, newTab, j, oldCap);
               else { // preserve order
                   // 下面处理目的 将bucket中的节点转移到新的hash table上
                   // loHead, loTail用来构成(e.hash & oldCap == 0)低oldCap位的节点单链表, 结果为newTab[j] = loHead
                   // hiHead, hiTail用来构成(e.hash & oldCap != 0)高oldCap位的节点单链表, 结果为newTab[j + oldCap] = hiHead
                   // eg: oldCap为16, 则newCap为32, 假设index为1的bucket上有有1,17,49,65三个节点
                   // 则1. 1 & 16 = 0, 65 & 16 = 0则loHead -> 1 -> 65 <- loTail -> null, 结果为newTab[1] = loHead
                   // 2. 17 & 16 != 0, 49 & 16 != 0,则 hiHead -> 17 -> 49 <- hiTail -> null, 结果为newTab[17(1+16)] = hiHead
                   Node<K,V> loHead = null, loTail = null;
                   Node<K,V> hiHead = null, hiTail = null;
                   Node<K,V> next;
                   do {
                       next = e.next;
                       if ((e.hash & oldCap) == 0) {
                           if (loTail == null)
                               loHead = e;
                           else
                               loTail.next = e;
                           loTail = e;
                       }
                       else {
                           if (hiTail == null)
                               hiHead = e;
                           else
                               hiTail.next = e;
                           hiTail = e;
                       }
                   } while ((e = next) != null);
                   if (loTail != null) {
                       loTail.next = null;
                       newTab[j] = loHead;
                   }
                   if (hiTail != null) {
                       hiTail.next = null;
                       newTab[j + oldCap] = hiHead;
                   }
               }
           }
       }
   }
   return newTab;
}

就以文章中例子代码为例,下图为oldTable -> newTable节点的转移过程


image

参考文献

Java 8系列之重新认识HashMap
Java HashMap工作原理及实现

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 204,189评论 6 478
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 85,577评论 2 381
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 150,857评论 0 337
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 54,703评论 1 276
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 63,705评论 5 366
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 48,620评论 1 281
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 37,995评论 3 396
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 36,656评论 0 258
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 40,898评论 1 298
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 35,639评论 2 321
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 37,720评论 1 330
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 33,395评论 4 319
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 38,982评论 3 307
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 29,953评论 0 19
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 31,195评论 1 260
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 44,907评论 2 349
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 42,472评论 2 342

推荐阅读更多精彩内容