为大数据集群选择正确的硬件

由于Hadoop是运行在数十,数百甚至更多节点上,尽可能多的考虑方方面面都可以节省成本。所以基于性价比,怎么才能选择合适的硬件?比如,对于IO密集型的工作负载,需要为每个CPU core匹配更多的存储或更高的吞吐(more spindles per core)。

1,计算和存储

         Hadoop将数据分布式存储在各台服务器上,使用文件副本来保证数据不丢以及容错。这样一个计算请求可以直接分发到存储数据的相应服务器并开始进行本地计算。由于Hadoop集群的每台节点都会存储和处理数据,所以就需要考虑怎样为集群里的这些服务器选择合适的配置。

    2,为什么跟工作负载有关系

  在很多情况下,MapReduce/Spark都会遭遇瓶颈,比如从磁盘或者网络读取数据(IO-bound的作业),或者在CPU处理大量数据时(CPU-bound的作业)。IO-bound的作业的一个例子是排序,一般需要很少的处理(简单的比较)却需要大量的读写磁盘。CPU-bound的作业的一个例子是分类(classification),一些数据往往需要很复杂的处理。 

1)  典型的IO-bound的工作负载如下:

l  数据导入导出

l  数据传输和转换

l  索引(Indexing)

l  分组(Grouping) 

2)  典型的CPU-bound工作负载如下:

l  聚类和分类(Clustering/Classification)

l  特征提取

l  复杂的文本挖掘

l  自然语言处理

    完全了解工作负载,才能够正确的选择合适的Hadoop硬件。如果没有研究过工作负载,往往会导致Hadoop运行的作业是基于不合适的硬件。此外,一些工作负载往往会受到一些其他的限制。比如因为选择了压缩,本应该是IO-bound的工作负载实际却是CPU-bound的,或者因为算法选择不同而使MapReduce或者Spark作业受限。由于这些原因,当不熟悉未来将要运行的工作负载时,可以选择一些较为均衡的硬件配置来搭建Hadoop集群。 

    接下来就可以在集群中运行一些MapReduce/Spark作业进行基准测试,来分析它们的bound方式。可以通过一些监控工具来确定工作负载的瓶颈。当然Cloudera Manager提供了这个功能,包括CPU,磁盘和网络负载的实时统计信息。通过Cloudera Manager,当集群在运行作业时,系统管理员可以通过dashboard很直观的查看每台机器的性能表现。

3,不同的工作负载的常见机器配置

1) Light Processing Configuration

1U的机器,一般为测试,开发或者低要求的场景:2个8-core CPUs,24-64GB内存,8个磁盘(1TB或者2TB)

2) Balanced Compute Configuration均衡或主流的配置

1U/2U的机器:2个8-core CPUs,48-256GB的内存,12-16块磁盘(1TB-4TB),硬盘为直通挂载

3) Storage Heavy Configuration,重存储的配置

2U的机器:2个8-core CPUs,48-128GB的内存,16-24块磁盘(2TB-6TB)。这种配置一旦多个节点或者机架故障,将对网络流量造成很大的压力

4) Compute Intensive Configuration,计算密集型的配置

2U的机器:2个8-core CPUs,64-512GB memory,4-8块磁盘(1TB-4TB)

4,CDH集群挑选硬件

     一个Hadoop集群通常有4个角色:NameNode(和Standby NameNode),ResourceManager,NodeManager和DataNode。集群中的绝大多数机器同时是NodeManager和DataNode,既用于数据存储,又用于数据处理。 

1) 较为通用和主流的NodeManager/DataNode配置

12-24块1-6TB硬盘, JBOD (Just a Bunch Of Disks)

2路8核,2路10核,2路12核的CPU, 主频至少2-2.5GHz

64-512GB内存

     绑定的万兆网 (存储越多,网络吞吐就要求越高) 

    NameNode负责协调集群上的数据存储,ResourceManager则是负责协调数据处理。Standby NameNode不应该与NameNode在同一台机器,但应该选择与NameNode配置相同的机器。 

     NameNode需要的内存与集群中存储的数据块成正比。常用的计算公式是集群中100万个块(HDFS blocks)对应NameNode的1GB内存。常见的10-50台机器规模的集群,NameNode服务器的内存配置一般选择128GB,NameNode的堆栈一般配置为32GB或更高。另外务必配置NameNode和ResourceManager的HA。

2) NameNode/ResourceManager及其Standby节点的推荐配置。磁盘的数量取决于冗余备份元数据的份数。

     4–6个1TB的硬盘,JBOD(1个是OS, 2个是NameNode的FS image [RAID 1], 1个配置给Apache ZooKeeper, 

还一个是配置给Journal node)

2路6核,2路8核的CPU, 主频至少2-2.5GHz

64-256GB的内存

绑定的万兆网

    5,Hadoop其他组件的考虑

    需要考虑HBase,Impala和Solr等。它们都会运行在DataNode上运行,从而保证数据的本地性。HBase是一个可靠的,列存储数据库,提供一致的,低延迟的随机读/写访问。Cloudera Search通过Solr实现全文检索,Solr是基于Lucene,CDH很好的集成了Solr Cloud和Apache Tika,从而提供更多的搜索功能。Apache Impala则可以直接运行在HDFS和HBase之上,提供交互式的低延迟SQL查询,避免了数据的移动和转换。

    由于GC超时的问题,建议的HBase RegionServer的heap size大小一般为16GB,而不是简单的越大越好。为了保证HBase实时查询的SLA,可以通过Cgroups的的方式给HBase分配专门的静态资源。 

    Impala是内存计算引擎,有时可以用到集群80%以上的内存资源,因此如果要使用Impala,建议每个节点至少有128GB的内存。当然也可以通过Impala的动态资源池来对查询的内存或用户进行限制。

Cloudera Search在做节点规划时比较有趣,可以先在一个节点安装Solr,然后装载一些文档,建立索引,并以期望的方式进行查询。然后继续装载,直到索引建立以及查询响应超过了的预期,这时候就需要考虑扩展了。单个节点Solr的这些数据可以给提供一些规划时的参考,但不包括复制因子因素。

6,总结及参考文献

https://www.cloudera.com/documentation/enterprise/release-notes/topics/rg_release_notes.html

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 220,458评论 6 513
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 94,030评论 3 396
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 166,879评论 0 358
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 59,278评论 1 295
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 68,296评论 6 397
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 52,019评论 1 308
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,633评论 3 420
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 39,541评论 0 276
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 46,068评论 1 319
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 38,181评论 3 340
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 40,318评论 1 352
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,991评论 5 347
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,670评论 3 331
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 32,183评论 0 23
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 33,302评论 1 272
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 48,655评论 3 375
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 45,327评论 2 358

推荐阅读更多精彩内容