m基于kmeans和SVM的网络入侵数据分类算法matlab仿真

1.算法描述

首先计算整个数据集合的平均值点,作为第一个初始聚类中心C1;


然后分别计算所有对象到C1的欧式距离d,并且计算每个对象在半径R的范围内包含的对象个数W。


此时计算P=u*d+(1-u)*W,所得到的最大的P值所对应的的对象作为第二个初始聚类中心C2。


同样的方法,分别计算所有对象到C2的欧式距离d,并且计算每个对象在半径R的范围内包含的对象个数W,所得到的最大的P值所对应的的对象作为第二个初始聚类中心C3。


从这三个初始聚类中心开始聚类划分。对于一个待分类的对象,计算它到现有聚类中心的距离,若(这个距离)<(现有各个聚类中心距离的最小值),则将这个待分类对象分到与它相距最近的那一类;如果(这个距离)>(现有各个聚类中心距离的最小值),则这个待分类对象就自成一类,成为一个新的聚类中心,然后对所有对象重新归类。


如果找到新的聚类中心,在重新计算聚类的中心后。对目前形成的K+1 个聚类计算 DBInew 的值,和未重新分配对象到这 k+1 个类之前计算的 DBIold进行比较,如果 DBInew <DBIold,则这个新找到的聚类中心可以作为新的聚类中心,否则将终止本次查找 k 的工作,并恢复到 DBIold 的状态。当所有这样符合新类产生条件的数据对象的 DBI 值都大于 DBIold 时,则确定再没有新的类产生,则确定了最终聚类个数为 k,可以进行最终的分配对象工作。



聚类仿真图:


1.和K-means算法比较的检测率


2.和K-means算法比较的误判率


特征提取:提取对检测最有用、最利于检测出攻击的那些参数。所用到的特征提取方案是利用“信息增益”,选出各特征参数中信息增益(Information Gain)最大的那些特征在检测时使用,这个做之前应该需要对数据先标准化和归一化一下。具体操作:



究竟选多少个特征可以让检测的精度最高呢?我论文里是先将各个特征的信息增益从高到低排序,然后依次往下取K个,用K-means算法对节点进行分类达到检测的作用,计算当检测率最高的时候所对应 K值,即意为选多少个特征。


经过特征提取后,之后所说的样本,他们的属性都只由特征提取后的那些特征来代表了。


SVM训练样本筛选:假定有正常和攻击两类样本,将两类样本分别用K-means聚类,将这些聚类中心点作为新的样本点。然后在正常类中,计算每个新样本点在异常类中距离自己最近的M(假定M=3)个样本点,从而在异常类中假设找到P个样本点。异常类中的这P个样本点找到在正常类中距离自己最近的M个样本点,假定找到了Q个样本点。此时,这P+Q个样本点就是新选出的SVM训练样本。


2.仿真效果预览

matlab2013b仿真结果如下:




3.MATLAB核心程序

is_continue = 1;

C           = [C1;C2;C3];

R           = [R1;R2;R3];

Leg         = ones(length(Attack_Dat),1);

K           = 3;

CNT         = 0;

while(is_continue == 1)

CNT = 0;

for i = 1:length(Attack_Dat)

for j = 1:size(C,1)

d(i,j) = func_dis(Attack_Dat(i,:),C(j,:));

end

[VV,II] = min(d(i,:));

if VV <= min(R)

Leg(i) = II;

CNT = CNT + 1;

else

K = K + 1;

Leg(i) = K;

C = [C;Attack_Dat(i,:)];

R = [R;alpha*mean(func_dis(Attack_Dat,Attack_Dat(i,:)))];

end

end


if CNT == length(Attack_Dat)

is_continue = 0;

else

is_continue = 1;

end

end

最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 214,444评论 6 496
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 91,421评论 3 389
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 160,036评论 0 349
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,363评论 1 288
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,460评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,502评论 1 292
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,511评论 3 412
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,280评论 0 270
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,736评论 1 307
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,014评论 2 328
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,190评论 1 342
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,848评论 5 338
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,531评论 3 322
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,159评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,411评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,067评论 2 365
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,078评论 2 352

推荐阅读更多精彩内容