2021-05-12

玻色-爱因斯坦凝聚态

玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工学院的沃夫冈·凯特利与科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的原子在170 nK的低温下首次获得了玻色-爱因斯坦凝聚。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。

中文名

玻色-爱因斯坦凝聚态

外文名

Bose-Einstein condensation

简称

BEC

本质

预言的一种新物态

预言者

A.爱因斯坦

比喻

让无数原子“齐声歌唱”

简介

玻色–爱因斯坦凝聚(Bose–Einstein condensate)是玻色子原子在冷却到接近绝对零度所呈现出的一种气态的、超流性的物质状态(物态)。1995年,麻省理工学院的沃夫冈·凯特利与科罗拉多大学鲍尔德分校的埃里克·康奈尔和卡尔·威曼使用气态的原子在170 nK的低温下首次获得了玻色-爱因斯坦凝聚。在这种状态下,几乎全部原子都聚集到能量最低的量子态,形成一个宏观的量子状态。

理论

所有原子的量子态都束聚于一个单一的量子态的状态被称为玻色凝聚或玻色-爱因斯坦凝聚。1920年代,萨特延德拉·纳特·玻色阿尔伯特·爱因斯坦以玻色关于光子统计力学研究为基础,对这个状态做了预言。

2005年7月22日,乌得勒支大学的学生罗迪·玻因克在保罗·埃伦费斯特的个人档案中发现了1924年12月爱因斯坦手写的原文的草稿。玻色和爱因斯坦的研究的结果是遵守玻色-爱因斯坦统计的玻色气体。玻色-爱因斯坦统计是描写玻色子的统计分布的理论。玻色子,其中包括光子和氦-4之类的原子,可以分享同一量子态。爱因斯坦推测将玻色子冷却到非常低的温度后它们会“落入”(“凝聚”)到能量最低的可能量子态中,导致一种全新的相态。

发现

1938年,彼得·卡皮查约翰·艾伦和冬·麦色纳(Don Misener)发现氦-4在降温到2.2 K时会成为一种叫做超流体的新的液体状态。超流的氦有许多非常不寻常的特征,比如它的黏度为零,其漩涡是量子化的。很快人们就认识到超液体的原因是玻色-爱因斯坦凝聚。事实上,康奈尔和威曼发现的气态的玻色-爱因斯坦凝聚呈现出许多超流体的特性。

“真正”的玻色-爱因斯坦凝聚最早是由康奈尔和威曼及其助手在天体物理实验室联合研究所于1995年6月5日制造成功的。他们使用激光冷却和磁阱中的蒸发冷却将约2000个稀薄的气态的铷-87原子的温度降低到170 nK后获得了玻色-爱因斯坦凝聚。四个月后,麻省理工学院沃尔夫冈·克特勒使用钠-23独立地获得了玻色-爱因斯坦凝聚。克特勒的凝聚较康奈尔和威曼的含有约100倍的原子,这样他可以用他的凝聚获得一些非常重要的结果,比如他可以观测两个不同凝聚之间的量子衍射。2001年康奈尔、威曼和克特勒为他们的研究结果共享诺贝尔物理奖

康奈尔、威曼和克特勒的结果引起了许多试验项目。比如2003年11月因斯布鲁克大学的鲁道尔夫·格里姆、科罗拉多大学鲍尔德分校的德波拉·金和克特勒制造了第一个分子构成的玻色-爱因斯坦凝聚。

与一般人们遇到的其它相态相比,玻色-爱因斯坦凝聚非常不稳定。玻色-爱因斯坦凝聚与外界世界的极其微小的相互作用足以使它们加热到超出临界温度,分解为单一原子的状态,因此在短期内不太有机会出现实际应用。

2016年5月17日,来自澳大利亚新南威尔士大学和澳大利亚国立大学的研究团队首次使用人工智能制造出了玻色-爱因斯坦凝聚。人工智能在此项实验中的作用是调节要求苛刻的温度和防止原子逃逸的激光束。

我们知道,常温下的气体原子行为就象台球一样,原子之间以及与器壁之间互相碰撞,其相互作用遵从经典力学定律;低温的原子运动,其相互作用则遵从量子力学定律,由德布罗意波来描述其运动,此时的德布罗意波波长λdb小于原子之间的距离d,其运动由量子属性自旋量子数来决定。我们知道,自旋量子数为整数的粒子为玻色子,而自旋量子数为半整数的粒子为费米子。

玻色子具有整体特性,在低温时集聚到能量最低的同一量子态(基态);而费米子具有互相排斥的特性,它们不能占据同一量子态,因此其它的费米子就得占据能量较高的量子态,原子中的电子就是典型的费米子。

早在1924年玻色和爱因斯坦就从理论上预言存在另外的一种物质状态——玻色爱因斯坦冷凝态,即当温度足够低、原子的运动速度足够慢时,它们将集聚到能量最低的同一量子态。此时,所有的原子就像一个原子一样,具有完全相同的物理性质。

根据量子力学中的德布洛意关系,λdb=h/p。粒子的运动速度越慢(温度越低),其物质波的波长就越长。当温度足够低时,原子的德布洛意波长与原子之间的距离在同一量级上,此时,物质波之间通过相互作用而达到完全相同的状态,其性质由一个原子的波函数即可描述; 当温度为绝对零度时,热运动现象就消失了,原子处于理想的玻色爱因斯坦冷凝态。

用于降低光速

虽然玻色-爱因斯坦凝聚很难理解也很难制作,但它们也有许多非常有趣的特性。比如它们可以有异常高的光学密度差。一般来说凝聚的折射系数是非常小的因为它的密度比平常的固体要小得多。但使用激光可以改变玻色-爱因斯坦凝聚的原子状态,使它对一定的频率的系数骤增。这样光速在凝聚内的速度就会骤降,甚至降到数米每秒。

自转的玻色-爱因斯坦凝聚可以作为黑洞的模型,入射的光不会逃离。凝聚也可以用来“冻结”光,这样被“冻结”的光在凝聚分解时又会被释放出来。

©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 216,692评论 6 501
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,482评论 3 392
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 162,995评论 0 353
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 58,223评论 1 292
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 67,245评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 51,208评论 1 299
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 40,091评论 3 418
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,929评论 0 274
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,346评论 1 311
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,570评论 2 333
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,739评论 1 348
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,437评论 5 344
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 41,037评论 3 326
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,677评论 0 22
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,833评论 1 269
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,760评论 2 369
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,647评论 2 354

推荐阅读更多精彩内容