算法:数学问题

  • 204 计数质数
    快速计算小于n的质数个数的厄拉多塞筛法:
    先将 2-N 的各数放入表中,然后在 2 的上面画一个圆圈,然后划去 2 的其他倍数;第一个既未画圈又没有被划去的数是 3,将它画圈,再划去 3 的其他倍数;现在既未画圈又没有被划去的第一个数是 5,将它画圈,并划去5的其他倍数……依次类推,一直到所有小于或等于N的各数都画了圈或划去为止。
    public int countPrimes(int n){
        int i = 2;
        int num[] = new int[n];
        while (i < n){
            if (num[i] == 0) {
                num[i] = 1;
                for (int j = i + i; j < n; j += i) {
                    num[j] = -1;
                }
            }
            i++;
        }
        int count = 0;
        for (int j = 2; j<n; j++){
            if (num[j] == 1){
                count++;
            }
        }
        return count;
    }
  • 326 3的幂
    进制转换:将n转换为三进制数,然后判断其是否符合“100...0”的格式
    public boolean isPowerOfThree(int n) {
        return Integer.toString(n, 3).matches("^10*$");
    }

整数限制:int范围内,最大的3的幂是3^{19},因此所有的3的幂都是这个数的除数。

  public class Solution {
      public boolean isPowerOfThree(int n) {
          return n > 0 && 1162261467 % n == 0;
      }
  }
  • 50 Pow(x, n)
    快速幂算法:
    x^n = \begin{cases} x^{n/2}*x^{n/2}& {even}\\ x^{n/2}*x^{n/2}*x& {odd}\end{cases}
private double fastPow(double x, long n) {
        if (n == 0) {
            return 1.0;
        }
        double half = fastPow(x, n / 2);
        if (n % 2 == 0) {
            return half * half;
        } else {
            return half * half * x;
        }
    }
    public double myPow(double x, int n) {
        long N = n;
        if (N < 0) {
            x = 1 / x;
            N = -N;
        }

        return fastPow(x, N);
    }
  • 69 x 的平方根
    牛顿迭代法:使用函数的切线来近似计算函数零值
    本题中求y=x^2,可令f(x) = x^2-y,从x_0点开始迭代,
    x_0的切线函数为g(x) = f(x_0)+(x-x_0)f’(x_0)
    g(x)=0,得x = \frac12(x_0+\frac{y}{x_0}),令x = x_0
    迭代,直到x_0变化很小。
    def mySqrt(self, x):
        if x < 0:
            raise Exception('不能输入负数')
        if x == 0:
            return 0
        # 起始的时候在 1 ,这可以比较随意设置
        cur = 1
        while True:
            pre = cur
            cur = (cur + x / cur) / 2
            if abs(cur - pre) < 1e-6:
                return int(cur)
  • 166 分数到小数
    长除法:每次比对当前余数是否出现过,若出现,则得到循环节;否则,添加商,重置被除数。
        ...
        while (!rems.contains(num)){
            rems.add(num);
            num *= 10;
            quo = num / sor;
            num = num % sor;
            res += quo;
            if (num == 0) {
                if (numerator>0^denominator>0)
                    return "-" + res;
                else
                    return res;
            }
        }
        ...
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 212,686评论 6 492
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 90,668评论 3 385
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 158,160评论 0 348
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 56,736评论 1 284
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 65,847评论 6 386
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,043评论 1 291
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,129评论 3 410
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 37,872评论 0 268
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 44,318评论 1 303
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 36,645评论 2 327
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 38,777评论 1 341
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 34,470评论 4 333
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,126评论 3 317
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 30,861评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,095评论 1 267
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 46,589评论 2 362
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 43,687评论 2 351