[Leetcode 126] Word Ladder II (hard)

Given two words (start and end), and a dictionary, find all shortest transformation sequence(s) from start to end, such that:

  • Only one letter can be changed at a time
  • Each intermediate word must exist in the dictionary
Example
Given:
start = "hit"
end = "cog"
dict = ["hot","dot","dog","lot","log"]
Return
  [
    ["hit","hot","dot","dog","cog"],
    ["hit","hot","lot","log","cog"]
  ]
思路 2. (mapping 只存每个节点其下一层的节点!!!!)
  1. HashMap<String, List<String>> mapping: 存每个节点其下一层的节点
  2. HashMap<String, Integer> distance: 存每个节点所在的层数(从0开始)

需要2步来处理

  1. BFS得到mapping (需要distance的帮助)
  2. 在mapping的基础上用DFS找到所有路径
class Solution {
    public List<List<String>> findLadders(String beginWord, String endWord, List<String> wordList) {
        List<List<String>> result = new ArrayList<> ();
        if (wordList == null || wordList.size () == 0 || !wordList.contains (endWord)) {
            return result;
        }
        
        // all neighbors of a word
        Map<String, Set<String>> mapOfWordAndNeighbors = new HashMap<> ();
        
        // distance from the beginWord
        Map<String, Integer> distance = new HashMap<> ();
        distance.put (beginWord, 0);
        
        // convert List into Set: to avoid timeout limited
        Set<String> wordSet = new HashSet<> (wordList);
        
        // 1. BFS to get words neighbors (only get its next layer's)
        getWordNeighborsMap (wordSet, beginWord, endWord, mapOfWordAndNeighbors, distance);
        
        if (mapOfWordAndNeighbors == null) {
            return result;
        }
        
        // 2. DFS to get all paths
        List<String> combinationEntry = new ArrayList<> ();
        combinationEntry.add (beginWord);
        getAllPaths (beginWord, endWord, mapOfWordAndNeighbors, combinationEntry, result);
        
        return result;
    }
    
    // using BFS to get word neighbor 
    // WARNING!!!!!: Don't use usedWords (HashSet<>), it's tough to handle the endWorld which has been visited
    // USE DISTANCE MAP, if a neighbor candidate is not in the distance map, or it's in the distance map but it is in the same layer (has the same distance)
    // then this neighbor a valid one, can put to the neighbor map 
    private void getWordNeighborsMap (Set<String> wordSet,
                                      String beginWord,
                                      String endWord,
                                      Map<String, Set<String>> mapOfWordAndNeighbors,
                                      Map<String, Integer> distance) 
    {
        Queue<String> currentLayer = new LinkedList<> ();
        Queue<String> nextLayer = new LinkedList<> ();
        currentLayer.offer (beginWord);
                
        while (!currentLayer.isEmpty ()) {
            String current = currentLayer.poll ();
            int currentDistance = distance.get (current);
            
            for (int i = 0; i < current.length (); i++) {
                for (char ch = 'a'; ch <= 'z'; ch++) {
                    if (current.charAt (i) == ch)
                        continue;
                    
                    char[] tempChar = current.toCharArray ();
                    tempChar [i] = ch;
                    String tempNeighbor = String.valueOf (tempChar);
                    
                    if (wordSet.contains (tempNeighbor) && (!distance.containsKey (tempNeighbor) || distance.getOrDefault (tempNeighbor, -1)  == currentDistance + 1)) {
                        nextLayer.offer (tempNeighbor);

                        // 1) update the neighbor map
                        Set<String> neighbors = mapOfWordAndNeighbors.getOrDefault (current, new HashSet<> ());
                        neighbors.add (tempNeighbor);
                        mapOfWordAndNeighbors.put (current, neighbors);
                        
                        // 2) update the distance map
                        distance.put (tempNeighbor, currentDistance + 1);
                    } 
                }
            }
            
            if (currentLayer.isEmpty ()) {
                currentDistance ++;
                currentLayer = nextLayer;
                nextLayer = new LinkedList<> ();
            }  
        }
    }
    
    // DFS: traverse the map to get all paths
    
    private void getAllPaths (String currentWord,
                              String endWord,
                              Map<String, Set<String>> mapOfWordAndNeighbors, 
                              List<String> combinationEntry, 
                              List<List<String>> result)
    {
        if (currentWord.equals (endWord)) {
            result.add (new ArrayList<> (combinationEntry));
            return;
        }
        
        for (String neighbor : mapOfWordAndNeighbors.getOrDefault (currentWord, new HashSet<> ())) {
            combinationEntry.add (neighbor);
            getAllPaths (neighbor, endWord, mapOfWordAndNeighbors, combinationEntry, result);
            combinationEntry.remove (combinationEntry.size () - 1);
        }
    }
}
思路 1. (mapping 存每个节点所有邻接点)

可以将这个word看做一个graph,找到其所有最短路径,需要2个数据结构。

  1. HashMap<String, List<String>> mapping: 存每个节点的所有邻接点
  2. HashMap<String, Integer> distance: 存每个节点所在的层数(从0开始)

需要2个函数来处理
getGraphicInfo: 填充mapping和distance (BFS算法)

public void getGraphicInfo(HashMap<String, List<String>> mapping,
                               HashMap<String, Integer> distance,
                               String start,
                               Set<String> dict {…}
  1. 用queue来存储graphic的节点
  2. queue中每个节点都取其neighbors
    a. 将该点的所有neighbors都放入mapping中对应的位置。
    b. 判断该neighbor是否已在distance中,如不在则说明并未访问过
    • 压入queue
    • 在distance中加入该neighbor的distance == curStr的distance + 1

getLadder:递归找到所有path(DFS算法)

public void getLadder(HashMap<String, List<String>> mapping,
                          HashMap<String, Integer> distance,
                          String start, String curStr,
                          Set<String> dict,
                          List<List<String>> result,
                          List<String> path) {... }

从后往前找path

  1. 每次进入该函数,path.add(curStr)
  2. 判断是否当前curStr节点==start,相等则代表找到了目标,将path加入到result中
  3. 不相等,则没有找到目标,还要继续找:
    遍历当前curStr的所有neighbors,如果是紧挨着的两个节点(curStr distance = neighbor distance + 1),那么就是最短的路劲上的节点,则将该neighbor传入getLadder()作为curStr,递归继续找
  4. 前面全部完成后,需要回朔path,每一次path都remove掉尾巴上的元素。
public class Solution {
    /**
      * @param start, a string
      * @param end, a string
      * @param dict, a set of string
      * @return a list of lists of string
      */
     /*
     public List<List<String>> findLadders(String start, String end, Set<String> dict) {
        List<List<String>> result = new ArrayList<>();
        if (dict == null) {
            return result;
        }
        
        //存每个节点的相邻节点
        HashMap<String, List<String>> mapping = new HashMap<>();
        
        //存每个节点所在的层数
        HashMap<String, Integer> distance = new HashMap<>();
        
        dict.add(end);
        dict.add(start);
        distance.put(start, 0);
        
        //填充了mapping, distance 2个hashmap,得到了图的所有信息
        // bfs算法
        getGraphicInfo(mapping, distance, start, dict);
        //得到path。getLadder为DFS算法,所以path(每条路径)需从外部传入
        List<String> path = new ArrayList<String>();
        getLadder(mapping, distance, start, end, dict, result, path);
        
        return result;
    }
    
    public void getGraphicInfo(HashMap<String, List<String>> mapping,
                               HashMap<String, Integer> distance,
                               String start,
                               Set<String> dict) {
        Queue<String> queue = new LinkedList<String>();
        queue.add(start);
        
        for (String str : dict) {
            mapping.put(str, new ArrayList<String>());
        }
        
        while (!queue.isEmpty()) {
            String cur = queue.poll();
            
            for (String str : getNeighbors(dict, cur)) {
                //填充mapping
                mapping.get(cur).add(str);
                
                //填充distance,distance的value是str节点的前一层节点(cur节点)的层数+1
                if (!distance.containsKey(str)) {
                    distance.put(str, distance.get(cur) + 1);
                    queue.add(str); //distance中没有出现过的节点才是下一层需要加继续queue的,如果已经出现过了,则不要再放进queue了,因为是以访问过的了
                }
            }
        }
    }
    
    public void getLadder(HashMap<String, List<String>> mapping,
                          HashMap<String, Integer> distance,
                          String start, String curStr,
                          Set<String> dict,
                          List<List<String>> result,
                          List<String> path) {
        //进入函数时就加一个节点
        path.add(curStr);
        if (curStr.equals(start)) {
            Collections.reverse(path);
            result.add(new ArrayList<>(path));
            Collections.reverse(path);
        } else {
            //找与当前节点相邻的节点,判断其是否是紧挨着的. 如果是则继续DFS算法继续找
            for (String str : mapping.get(curStr)) {
                if (distance.get(curStr) == distance.get(str) + 1) {
                    getLadder(mapping, distance, start, str, dict, result, path);
                }
            }
        }
        path.remove(path.size() - 1);
    }
    
    public List<String> getNeighbors(Set<String> dict, String cur) {
        List<String> result = new ArrayList<String>();
        
        for (int i = 0; i < cur.length(); i++) {
            for (char c = 'a'; c <= 'z'; c++) {
                char[] temp = cur.toCharArray();
                if (cur.charAt(i) == c) {
                    continue;
                }
                temp[i] = c;
                String newStr = String.valueOf(temp);
                if (dict.contains(newStr)) {
                    result.add(newStr);
                }
            }
        }
        return result;
    }
}
最后编辑于
©著作权归作者所有,转载或内容合作请联系作者
  • 序言:七十年代末,一起剥皮案震惊了整个滨河市,随后出现的几起案子,更是在滨河造成了极大的恐慌,老刑警刘岩,带你破解...
    沈念sama阅读 215,794评论 6 498
  • 序言:滨河连续发生了三起死亡事件,死亡现场离奇诡异,居然都是意外死亡,警方通过查阅死者的电脑和手机,发现死者居然都...
    沈念sama阅读 92,050评论 3 391
  • 文/潘晓璐 我一进店门,熙熙楼的掌柜王于贵愁眉苦脸地迎上来,“玉大人,你说我怎么就摊上这事。” “怎么了?”我有些...
    开封第一讲书人阅读 161,587评论 0 351
  • 文/不坏的土叔 我叫张陵,是天一观的道长。 经常有香客问我,道长,这世上最难降的妖魔是什么? 我笑而不...
    开封第一讲书人阅读 57,861评论 1 290
  • 正文 为了忘掉前任,我火速办了婚礼,结果婚礼上,老公的妹妹穿的比我还像新娘。我一直安慰自己,他们只是感情好,可当我...
    茶点故事阅读 66,901评论 6 388
  • 文/花漫 我一把揭开白布。 她就那样静静地躺着,像睡着了一般。 火红的嫁衣衬着肌肤如雪。 梳的纹丝不乱的头发上,一...
    开封第一讲书人阅读 50,898评论 1 295
  • 那天,我揣着相机与录音,去河边找鬼。 笑死,一个胖子当着我的面吹牛,可吹牛的内容都是我干的。 我是一名探鬼主播,决...
    沈念sama阅读 39,832评论 3 416
  • 文/苍兰香墨 我猛地睁开眼,长吁一口气:“原来是场噩梦啊……” “哼!你这毒妇竟也来了?” 一声冷哼从身侧响起,我...
    开封第一讲书人阅读 38,617评论 0 271
  • 序言:老挝万荣一对情侣失踪,失踪者是张志新(化名)和其女友刘颖,没想到半个月后,有当地人在树林里发现了一具尸体,经...
    沈念sama阅读 45,077评论 1 308
  • 正文 独居荒郊野岭守林人离奇死亡,尸身上长有42处带血的脓包…… 初始之章·张勋 以下内容为张勋视角 年9月15日...
    茶点故事阅读 37,349评论 2 331
  • 正文 我和宋清朗相恋三年,在试婚纱的时候发现自己被绿了。 大学时的朋友给我发了我未婚夫和他白月光在一起吃饭的照片。...
    茶点故事阅读 39,483评论 1 345
  • 序言:一个原本活蹦乱跳的男人离奇死亡,死状恐怖,灵堂内的尸体忽然破棺而出,到底是诈尸还是另有隐情,我是刑警宁泽,带...
    沈念sama阅读 35,199评论 5 341
  • 正文 年R本政府宣布,位于F岛的核电站,受9级特大地震影响,放射性物质发生泄漏。R本人自食恶果不足惜,却给世界环境...
    茶点故事阅读 40,824评论 3 325
  • 文/蒙蒙 一、第九天 我趴在偏房一处隐蔽的房顶上张望。 院中可真热闹,春花似锦、人声如沸。这庄子的主人今日做“春日...
    开封第一讲书人阅读 31,442评论 0 21
  • 文/苍兰香墨 我抬头看了看天上的太阳。三九已至,却和暖如春,着一层夹袄步出监牢的瞬间,已是汗流浃背。 一阵脚步声响...
    开封第一讲书人阅读 32,632评论 1 268
  • 我被黑心中介骗来泰国打工, 没想到刚下飞机就差点儿被人妖公主榨干…… 1. 我叫王不留,地道东北人。 一个月前我还...
    沈念sama阅读 47,474评论 2 368
  • 正文 我出身青楼,却偏偏与公主长得像,于是被迫代替她去往敌国和亲。 传闻我的和亲对象是个残疾皇子,可洞房花烛夜当晚...
    茶点故事阅读 44,393评论 2 352

推荐阅读更多精彩内容